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1 Intuition

1.1 Mixing and unmixing
1.1.1 Exercise: Guess independent components and distributions from data

Decide whether the following distributions can be linearly separated into independent components. If yes,
sketch the (not necessarily orthogonal) axes onto which the data must be projected to extract the independent
components. Draw on these axes also the marginal distributions of the corresponding components.
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2 Formalism based on cumulants

2.1 Moments and cumulants
2.1.1 Exercise: Moments and cumulants

Mixed cumulants k can be written as sums of products of mixed moments and vice versa. More intuitive is
the latter. Since cumulants represent a distribution only in exactly one order, since the lower order moments
have been subtracted off, it is easy to imagine that a moment can be written by summing over all possible
combinations of cumulants that add up exactly to the order of the moment, for instance

(X1X2X3) = k(X1,X9,X3)
+ Iﬂ()(l7 XQ)I{(Xg) + K(Xl, X3)IQ<X2) + I{(XQ, Xg)l{(Xl)
+ R(X1)R(Xa)R(X3) . (1)

The general rule is

(X1 Xn)=>_ [ #(X::i€B), (2)

™ BEm

with 7 going through the list of all possible partitions of the N variables into disjoint blocks and B indicating
the blocks within one partition.

Hint: You cannot assume zero-mean data here.

Hint: In the following it is convenient to write Mia3 and Ciag etc. instead of (X7 X5 X3) and k(X7, Xo, X3)
etc.

1. Write with the help of equation (2) all mixed moments up to order four as a sum of products of
cumulants, like in equation (1).

2. From the equations found in part 1 derive expressions for the cumulants up to order three written as
sums of products of moments.

2.1.2 Exercise: Moments and cumulants of concrete distributions

1. What can you say in general about moments and cumulants of symmetric distributions (even functions)
of a single variable?
2. Calculate all moments up to order ten and all cumulants up to order four for the following distributions.

Hint: First derive a closed form or a recursive formula for (2™) and then insert the different values for
n.
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(a) Uniform distribution (D: Gleichverteilung):

R 8

(b) Laplace- or double exponential distribution (D: doppelt exponentielle Verteilung):
exp(—|z|)
p(z) = % . (2)

2.1.3 Exercise: Moments and cumulants of scaled distributions

Assume all moments and cumulants of a scalar random variable X are given. How do moments and cumulants
change if the variable is scaled by a factor s around the origin, i.e. simply multiplied by s ? Prove your
result.

Hint: Cumulants can always be written as a sum of products of moments of identical overall order.

2.1.4 Exercise: Moments and cumulants of shifted distributions

Assume all moments and cumulants of a (non zero-mean) scalar random variable X are known. How do the
first four moments and the first three cumulants change if the variable is shifted by m?

Hint: See exercise 2.1.1 for the cumulants of non-zero-mean data.

2.1.5 Exercise: Kurtosis is additive

Kurtosis for a zero-mean random variable z is defined as

kurt(z) := (z*) — 3(z%)?. (1)

Show that for two statistically independent zero-mean random variables z und y
kurt(x + y) = kurt(z) + kurt(y) (2)

holds. Make clear where you use which argument for simplifications.

2.1.6 Exercise: Moments and cumulants are multilinear
1. Show that cross-moments, such as (x1xz223), are multilinear, i.e. linear in each of their arguments, e.g.
((azy + bx))w223...) = a(rim2m3...) + b{T)T273...) (1)
with a and b being constants and x) being another random variable.

2. Show that cross-cumulants, such as k(x1, z2, z3), are multilinear, i.e. linear in each of their arguments.

3. As we have seen in exercise 2.1.5, the kurtosis is additive for two statistically independent zero-mean
random variables x und vy, i.e.

kurt(z + y) = kurt(z) + kurt(y) . (2)

Why is statistical independence required for the additivity of kurtosis of the signals while it is not for
the multilinearity of cross-cumulants.



2.1.7 Exercise: Mixing statistically independent sources

Given some scalar and statistically independent random variables (signals) s; with zero mean, unit variance,
and a value a; for the kurtosis that lies between —a and +a, with arbitrary but fixed value of 0 < a. The s;
shall be mixed like
T = Z W;S; (1)
2

with constant weights w;.

1. Which constraints do you have to impose on the weights w; to guarantee that the mixture has unit
variance as well?

2. Prove that the kurtosis of an equally weighted mixture (w; = w;Vi,j) of N signals converges to zero
as N goes to infinity.

Hints: (i) For the kurtosis and two statistically independent random variables s; and s,
kurt(sy + s2) = kurt(sy) + kurt(ss) (2)
holds. (ii) Use the constraint from part 1.
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