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1 Intuition

1.1 Mixing and unmixing

1.1.1 Exercise: Guess independent components and distributions from data

Decide whether the following distributions can be linearly separated into independent components. If yes,
sketch the (not necessarily orthogonal) axes onto which the data must be projected to extract the independent
components. Draw on these axes also the marginal distributions of the corresponding components.

(b)(a)

(d) (e) (f)

(c)

x2

x1
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Solution:

(a) (b) (c)

(d) (e) (f)

x1

x2

e2

e1

e1

d1

d2

d2
e2

e1

d1

e2
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Vectors e1 and e2 used for extracting the independent components are drawn with inverted arrow heads.
Vectors d1 and d2 used for mixing the sources are drawn with dashed lines and proper arrow heads, but
only if different from e1 and e2. All vectors are drawn with same length, which is not correct in some
cases, because the variances of the extracted components might be wrong. If unmixing is not possible, no
additional vectors are drawn. The distributions of the extracted sources are drawn on the e1- and e2-axes.
Notice that they should be normalized to 1, i.e. they should have the same area.

Extra question:Elaborate on (f) (do not simplify this to a parallelogram). How exactly do the distribution
and extraction vectors come about and relate to each other? How do you write the mixing and unmixing
process in matrix notation?
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1.2 How to find the unmixing matrix?

1.3 Sources can only be recovered up to permutation and rescaling

1.4 Whiten the data first

1.5 A generic ICA algorithm

2 Formalism based on cumulants

2.1 Moments and cumulants

2.1.1 Exercise: Moments and cumulants

Mixed cumulants κ can be written as sums of products of mixed moments and vice versa. More intuitive is
the latter. Since cumulants represent a distribution only in exactly one order, since the lower order moments
have been subtracted off, it is easy to imagine that a moment can be written by summing over all possible
combinations of cumulants that add up exactly to the order of the moment, for instance

〈X1X2X3〉 = κ(X1, X2, X3)

+ κ(X1, X2)κ(X3) + κ(X1, X3)κ(X2) + κ(X2, X3)κ(X1)

+ κ(X1)κ(X2)κ(X3) . (1)

The general rule is

〈X1 · · ·XN 〉 =
∑
π

∏
B∈π

κ(Xi : i ∈ B) , (2)

with π going through the list of all possible partitions of the N variables into disjoint blocks and B indicating
the blocks within one partition.

Hint: You cannot assume zero-mean data here.

Hint: In the following it is convenient to write M123 and C123 etc. instead of 〈X1X2X3〉 and κ(X1, X2, X3)
etc.

1. Write with the help of equation (2) all mixed moments up to order four as a sum of products of
cumulants, like in equation (1).

Solution: With equation (2) we get

M1
(2)
= C1 , (3)

M12
(2)
= C12

+ C1C2 , (4)

M123
(2)
= C123

+ C12C3 + C13C2 + C23C1

+ C1C2C3 , (5)

M1234
(2)
= C1234

+ C123C4 + C124C3 + C134C2 + C234C1

+ C12C34 + C13C24 + C14C23

+ C12C3C4 + C13C2C4 + C14C2C3 + C23C1C4 + C24C1C3 + C34C1C2

+ C1C2C3C4 . (6)
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By the way, it is interesting to reflect why it is reasonable that the terms in the sums above contain
each random variable exactly once. Why aren’t there terms where a variable is missing or a variable
appears twice?

2. From the equations found in part 1 derive expressions for the cumulants up to order three written as
sums of products of moments.

Solution: Solving and inserting the equations above yields

C1
(3)
= M1 , (7)

C12
(4)
= M12

− C1C2 (8)
(7)
= M12

−M1M2 , (9)

C123
(5)
= M123

− C12C3 − C13C2 − C23C1

− C1C2C3 (10)
(7,9)
= M123

− (M12 −M1M2)M3 − (M13 −M1M3)M2 − (M23 −M2M3)M1

−M1M2M3 (11)

= M123

−M12M3 −M13M2 −M23M1

+ 2M1M2M3 , (12)

(13)
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and for for the sake of completeness (without any guarantee for correctness)

C1234

(6)
= M1234

− C123C4 − C124C3 − C134C2 − C234C1

− C12C34 − C13C24 − C14C23

− C12C3C4 − C13C2C4 − C14C2C3 − C23C1C4 − C24C1C3 − C34C1C2

− C1C2C3C4 (14)
(7,9,12)
= M1234

− (M123 −M12M3 −M13M2 −M23M1 + 2M1M2M3)M4

− (M124 −M12M4 −M14M2 −M24M1 + 2M1M2M4)M3

− (M134 −M13M4 −M14M3 −M34M1 + 2M1M3M4)M2

− (M234 −M23M4 −M24M3 −M34M2 + 2M2M3M4)M1

− (M12 −M1M2)(M34 −M3M4)

− (M13 −M1M3)(M24 −M2M4)

− (M14 −M1M4)(M23 −M2M3)

− (M12 −M1M2)M3M4 − (M13 −M1M3)M2M4 − (M14 −M1M4)M2M3

− (M23 −M2M3)M1M4 − (M24 −M2M4)M1M3 − (M34 −M3M4)M1M2

−M1M2M3M4 (15)

= M1234

−M123M4 +M12M3M4 +M13M2M4 +M23M1M4 − 2M1M2M3M4

−M124M3 +M12M4M3 +M14M2M3 +M24M1M3 − 2M1M2M4M3

−M134M2 +M13M4M2 +M14M3M2 +M34M1M2 − 2M1M3M4M2

−M234M1 +M23M4M1 +M24M3M1 +M34M2M1 − 2M2M3M4M1

−M12M34 +M12M3M4 +M1M2M34 −M1M2M3M4

−M13M24 +M13M2M4 +M1M3M24 −M1M3M2M4

−M14M23 +M14M2M3 +M1M4M23 −M1M4M2M3

−M12M3M4 +M1M2M3M4 −M13M2M4 +M1M3M2M4 −M14M2M3 +M1M4M2M3

−M23M1M4 +M2M3M1M4 −M24M1M3 +M2M4M1M3 −M34M1M2 +M3M4M1M2

−M1M2M3M4 (16)

= M1234

−M123M4 −M124M3 −M134M2 −M234M1

−M12M34 −M13M24 −M14M23

+ 2M12M3M4 + 2M13M2M4 + 2M14M2M3 + 2M23M1M4 + 2M24M1M3 + 2M34M1M2

− 6M1M2M3M4 . (17)

If all variables are identical, i.e. X1 = X2 = X3 = X4 = X, then the first four mixed cumulants become
the mean, variance, skewness, and kurtosis.

Extra question: Can one get an intuition for what higher order mixed moments and cumulants mean?

2.1.2 Exercise: Moments and cumulants of concrete distributions

1. What can you say in general about moments and cumulants of symmetric distributions (even functions)
of a single variable?

Solution: For symmetric distributions of a single variable all moments of odd order vanish, since
positive and negative contributions cancel out each other for symmetry reasons. In particular such
distributions have zero mean. The same is true for cumulants of odd order, which, as we know, can
be written as sums of products of moments. Each of these products must have the same order as the
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cumulant, i.e. must be of odd overall order. This implies that at least one moment in each product
must be odd, so that each product vanishes, because moments of odd order vanish. (One could not
argue like that for even cumulants, since it is easy to generate an even order product with odd moments
only. For instance, the product of two moments of order 3 (odd) is of order 6 (even).) Moments of even
order are positive, because of the even exponent. That does not necessarily hold for even cumulants.

2. Calculate all moments up to order ten and all cumulants up to order four for the following distributions.

Hint: First derive a closed form or a recursive formula for 〈xn〉 and then insert the different values for
n.

Solution: As a reminder here are the definitions of the first four cumulants again.

Mean: mean(x) := 〈x〉 (1)

= 0 (if the data have zero mean) , (2)

Variance: var(x) := 〈x2〉 − 〈x〉2 (3)

:= 〈x2〉 (if the data have zero mean) , (4)

Skewness: skew(x) := 〈x3〉 − 3〈x2〉〈x〉+ 2〈x〉3 , (5)

:= 〈x3〉 (if the data have zero mean) , (6)

Kurtosis: kurt(x) := 〈x4〉 − 3〈x2〉2 (if the data have zero mean) . (7)

Now to the exercises.

(a) Uniform distribution (D: Gleichverteilung):

p(x) :=

{
1/2 if x ∈ [−1,+1]
0 otherwise

. (8)

Solution: First we calculate the moments of the distribution and then the cumulants. Since the
distribution is symmetric, all odd moments and cumulants vanish. In particular the distribution has
zero mean. Thus, we confine our considerations to even n.

〈xn〉 =

∫ +∞

−∞
xnp(x) dx (9)

(8)
=

∫ +1

−1
xn · 1/2 dx (10)

=
[
xn+1/(n+ 1)

]+1

−1

/
2 (11)

=
(

(+1)
n+1 − (−1)

n+1
)/

(2 (n+ 1)) (12)

= 2
/

(2 (n+ 1)) (since n is even) (13)

= 1/(n+ 1) (14)

=⇒ 〈x2〉 (14)
= 1/3 ≈ 0.33 (15)

∧ 〈x4〉 (14)
= 1/5 = 0.5 (16)

∧ 〈x6〉 (14)
= 1/7 ≈ 0.14 (17)

∧ 〈x8〉 (14)
= 1/9 ≈ 0.11 (18)

∧ 〈x10〉 (14)
= 1/11 ≈ 0.09 , (19)

var(x)
(3)
= 〈x2〉 − 〈x〉2 (15)

= 1/3 ≈ 0.33 (since 〈x〉 = 0) , (20)

kurt(x)
(7)
= 〈x4〉 − 3〈x2〉2 (16,15)

= 1/5− 3 · (1/3)2 (21)

= 3/15− 5/15 = −2/15 ≈ −0.13 . (22)

As expected the kurtosis is negative, since the distribution is less peaky (D: spitz(?)) than a Gaussian
distribution.
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(b) Laplace- or double exponential distribution (D: doppelt exponentielle Verteilung):

p(x) :=
exp(−|x|)

2
. (23)

Solution: First we calculate the moments of the distribution and then the cumulants. Since the
distribution is symmetric, all odd moments and cumulants vanish. In particular the distribution has
zero mean. Thus, we confine our considerations to even n.

〈xn〉 =

∫ +∞

−∞
xnp(x) dx (24)

(23)
=

∫ +∞

−∞
xn exp(−|x|)/2 dx (25)

=

∫ 0

−∞
xn exp(x) dx (since n is even) (26)

= [xn exp(x)]
0
−∞︸ ︷︷ ︸

=0

−n
∫ 0

−∞
xn−1 exp(x) dx (27)

(integration by parts)

= −n

([
xn−1 exp (x)

]0
−∞︸ ︷︷ ︸

=0

−(n− 1)

∫ 0

−∞
xn−2 exp (x) dx

)

(integration by parts) (28)

= n(n− 1)

∫ 0

−∞
xn−2 exp (x) dx (29)

(26)
= n(n− 1) · 〈xn−2〉 (since (n− 2) is even) (30)
(26)
= n! (as one can show with mathematical induction) (31)

=⇒ 〈x0〉 = 1 (since the distribution must be normalized) (32)

∧ 〈x2〉 (31)
= 2! = 2 (33)

∧ 〈x4〉 (31)
= 4! = 24 (34)

∧ 〈x6〉 (31)
= 6! = 720 (35)

∧ 〈x8〉 (31)
= 8! = 40,320 (36)

∧ 〈x10〉 (31)
= 10! = 3,628,800 , (37)

var(x)
(3)
= 〈x2〉 − 〈x〉2 = 2 (since 〈x〉 = 0) , (38)

kurt(x)
(7)
= 〈x4〉 − 3〈x2〉2 (34,33)

= 24− 3 · 22 = 12 . (39)

As expected the kurtosis is positive, since the distribution is more peaky (D: spitz(?)) than a Gaussian
distribution.

2.1.3 Exercise: Moments and cumulants of scaled distributions

Assume all moments and cumulants of a scalar random variable X are given. How do moments and cumulants
change if the variable is scaled by a factor s around the origin, i.e. simply multiplied by s ? Prove your
result.

Hint: Cumulants can always be written as a sum of products of moments of identical overall order.

Solution: It is easy to see that the moments of order n simply scale with sn if one goes from the original
data X to the scaled data sX,

〈(sX)n〉 = sn〈Xn〉 (since s is a constant) . (1)
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The same is true for the cumulants, because all terms in a cumulant are of same overall order, i.e. contain
X and therefore s the same number of times, for instance

skew(sX) = 〈(sX)3〉 − 3〈(sX)2〉〈sX〉+ 2〈(sX)〉3 (2)

= s3〈X3〉 − 3s2〈X2〉s〈X〉+ 2(s〈X〉)3 (3)

= s3(〈X3〉 − 3〈X2〉〈X〉+ 2〈X〉3) (4)

= s3 skew(X) . (5)

2.1.4 Exercise: Moments and cumulants of shifted distributions

Assume all moments and cumulants of a (non zero-mean) scalar random variable X are known. How do the
first four moments and the first three cumulants change if the variable is shifted by m?

Hint: See exercise 2.1.1 for the cumulants of non-zero-mean data.

Solution: For the moments we find

〈m+X〉 = m+ 〈X〉 , (1)

〈(m+X)2〉 = 〈m2 + 2mX +X2〉 (2)

= m2 + 2m〈X〉+ 〈X2〉 , (3)

〈(m+X)3〉 = 〈m3 + 3m2X + 3mX2 +X3〉 (4)

= m3 + 3m2〈X〉+ 3m〈X2〉+ 〈X3〉 , (5)

〈(m+X)4〉 = 〈m4 + 4m3X + 6m2X2 + 4mX3 +X4〉 (6)

= m4 + 4m3〈X〉+ 6m2〈X2〉+ 4m〈X3〉+ 〈X4〉 . (7)

Here is a pattern emerging. With a bit of thought one can see that the weighting factors for the monomials
mµ〈X4−µ〉 grow like the numbers in Pascal’s triangle.

For the cumulants the situation is conceptionally simpler but computationally more complex. Intuitively one
would expect that the mean is the only cumulant that changes, because higher-order cumulants are blind to
what is represented by lower-order cumulants already. Thus they capture the shape of the distribution and
should be blind to the mean. The formal verification is a bit tedious, but for order two we find

var(m+X) = 〈(m+X)2〉 − 〈(m+X)〉2 (8)

= 〈m2 + 2mX +X2〉 − 〈m+X〉2 (9)

= 〈m2〉+ 〈2mX〉+ 〈X2〉 − (〈m〉+ 〈X〉)2 (10)

= m2 + 2m〈X〉+ 〈X2〉 −m2 − 2m〈X〉 − 〈X〉2 (11)

= 〈X2〉 − 〈X〉2 (12)

= var(X) , (13)
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and for three

skew(m+X) = 〈(m+X)3〉 − 3〈(m+X)2〉〈(m+X)〉+ 2〈(m+X)〉3 (14)

= 〈m3 + 3m2X + 3mX2 +X3〉 − 3〈m2 + 2mX +X2〉〈m+X〉+ 2〈m+X〉3 (15)

= m3 + 3m2〈X〉+ 3m〈X2〉+ 〈X3〉
− 3(m2 + 2m〈X〉+ 〈X2〉)(m+ 〈X〉) + 2(m+ 〈X〉)3 (16)

= m3 + 3m2〈X〉+ 3m〈X2〉+ 〈X3〉
− 3m2m− 3 · 2m〈X〉m− 3〈X2〉m− 3m2〈X〉 − 3 · 2m〈X〉〈X〉 − 3〈X2〉〈X〉
+ 2m3 + 2 · 3m2〈X〉+ 2 · 3m〈X〉2 + 2〈X〉3 (17)

= (m3 − 3m2m+ 2m3)

+ (3m2 − 3 · 2mm− 3m2 + 2 · 3m2)〈X〉
+ (3m− 3m)〈X2〉+ (−3 · 2m+ 2 · 3m)〈X〉2

+ 〈X3〉+ (−3)〈X2〉〈X〉+ 2〈X〉3 (18)

= 〈X3〉 − 3〈X2〉〈X〉+ 2〈X〉3 (19)

= skew(X) . (20)

Scaling, however, changes all cumulants (unless they have been normalized) as well as the moments.

2.1.5 Exercise: Kurtosis is additive

Kurtosis for a zero-mean random variable x is defined as

kurt(x) := 〈x4〉 − 3〈x2〉2 . (1)

Show that for two statistically independent zero-mean random variables x und y

kurt(x+ y) = kurt(x) + kurt(y) (2)

holds. Make clear where you use which argument for simplifications.

Solution: We can show directly that

kurt(x+ y)
(1)
= 〈(x+ y)4〉 − 3〈(x+ y)2〉2 (3)

= 〈x4 + 4x3y + 6x2y2 + 4xy3 + y4〉 − 3〈x2 + 2xy + y2〉2 (4)

= 〈x4〉+ 4〈x3〉〈y〉+ 6〈x2〉〈y2〉+ 4〈x〉〈y3〉+ 〈y4〉

− 3
(
〈x2〉+ 2〈x〉〈y〉+ 〈y2〉

)2
(5)

(since x and y are statistically independent)

= 〈x4〉+ 6〈x2〉〈y2〉+ 〈y4〉 − 3
(
〈x2〉+ 〈y2〉

)2
(6)

(since 〈x〉 = 〈y〉 = 0)

= 〈x4〉+ 6〈x2〉〈y2〉+ 〈y4〉 − 3〈x2〉2 − 3 · 2〈x2〉〈y2〉 − 3〈y2〉2 (7)

= 〈x4〉 − 3〈x2〉2 + 〈y4〉 − 3〈y2〉2 (8)
(1)
= kurt(x) + kurt(y) . (9)

This additivity for statistically independent random variables holds true for any cumulant.

2.1.6 Exercise: Moments and cumulants are multilinear

1. Show that cross-moments, such as 〈x1x2x3〉, are multilinear, i.e. linear in each of their arguments, e.g.

〈(ax1 + bx′1)x2x3...〉 = a〈x1x2x3...〉+ b〈x′1x2x3...〉 (1)

10



with a and b being constants and x′1 being another random variable.

Solution: This follows directly from the linearity of the averaging process. Without loss of generality
we consider the first out of an arbitrary number of variables and find

〈(ax1 + bx′1)x2x3...〉 = 〈(ax1)x2x3...〉+ 〈(bx′1)x2x3...〉 (2)

= a〈x1x2x3...〉+ b〈x′1x2x3...〉 , (3)

which proves the assertion.

2. Show that cross-cumulants, such as κ(x1, x2, x3), are multilinear, i.e. linear in each of their arguments.

Solution: A cross-cumulant can always be written as a sum of products of moments, each term
containing the same variables as the cumulant, for instance

κ(x1, x2, x3) = 〈x1x2x3〉 − 〈x1x2〉〈x3〉 − 〈x1x3〉〈x2〉 − 〈x2x3〉〈x1〉+ 2〈x1〉〈x2〉〈x3〉 . (4)

Each term in this sum is linear in each of its arguments, because the moment it appears in is linear
and the other moments are simple constant factors. Since a sum of linear functions is again a linear
function, cumulants are linear in each of its elements.

3. As we have seen in exercise 2.1.5, the kurtosis is additive for two statistically independent zero-mean
random variables x und y, i.e.

kurt(x+ y) = kurt(x) + kurt(y) . (5)

Why is statistical independence required for the additivity of kurtosis of the signals while it is not for
the multilinearity of cross-cumulants.

Solution: The additivity of kurtosis is not a linearity in the proper sense. For instance, kurt(ax) =
akurt(x) with a constant a does not hold but would be required for linearity. Zero mean and statistical
independence are required to eliminate all the mixed terms that would otherwise arise.

2.1.7 Exercise: Mixing statistically independent sources

Given some scalar and statistically independent random variables (signals) si with zero mean, unit variance,
and a value ai for the kurtosis that lies between −a and +a, with arbitrary but fixed value of 0 < a. The si
shall be mixed like

x :=
∑
i

wisi (1)

with constant weights wi.

1. Which constraints do you have to impose on the weights wi to guarantee that the mixture has unit
variance as well?
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Solution: The variance of the mixture is

var(x) =
〈
(x− 〈x〉)2

〉
(2)

=
〈
x2
〉
− 〈x〉2 (3)

(1)
=

〈(∑
i

wisi

)2〉
−

〈∑
i

wisi

〉2

(4)

=

〈(∑
i

wisi

)2〉
−

(∑
i

wi 〈si〉

)2

(5)

=

〈(∑
i

wisi

)∑
j

wjsj

〉−(∑
i

wi 〈si〉

)∑
j

wj 〈sj〉

 (6)

=

〈∑
i,j

wiwjsisj

〉
−
∑
i,j

wiwj 〈si〉 〈sj〉 (7)

=
∑
i,j

wiwj 〈sisj〉 −
∑
i,j

wiwj 〈si〉 〈sj〉 (8)

=
∑
i

wiwi(〈sisi〉 − 〈si〉 〈si〉) +
∑
i,j:i 6=j

wiwj(〈sisj〉 − 〈si〉 〈sj〉) (9)

=
∑
i

w2
i (〈sisi〉 − 〈si〉2)︸ ︷︷ ︸

=var(si)=1

+
∑
i,j:i 6=j

wiwj (〈si〉 〈sj〉 − 〈si〉 〈sj〉)︸ ︷︷ ︸
=0

(10)

(since si and sj are statistically independent for i 6= j)

=
∑
i

w2
i . (11)

Thus, the unit variance contraint for the mixture translates into the constraint∑
i

w2
i = 1 (12)

for the weights.

2. Prove that the kurtosis of an equally weighted mixture (wi = wj∀i, j) of N signals converges to zero
as N goes to infinity.

Hints: (i) For the kurtosis and two statistically independent random variables s1 and s2

kurt(s1 + s2) = kurt(s1) + kurt(s2) (13)

holds. (ii) Use the constraint from part 1.

Solution: Due to the equal weights and the constraint (12) we get

x :=
1√
N

∑
i

si . (14)
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This implies the following estimate for the kurtosis

|kurt(x)| (14)
=

∣∣∣∣∣kurt

(
1√
N

∑
i

si

)∣∣∣∣∣ (15)

=

∣∣∣∣∣
(

1√
N

)4

kurt

(∑
i

si

)∣∣∣∣∣ (16)

(since the kurtosis is of fourth order)

(13)
=

1

N2

∣∣∣∣∣∑
i

kurt(si)

∣∣∣∣∣ (17)

≤ 1

N2

∑
i

|kurt(si)| (18)

≤ a

N2

∑
i

1︸ ︷︷ ︸
=N

(since kurt(si) ∈ [−a,+a]) (19)

=
a

N
, (20)

(21)

which goes to zero as N goes to infinity, so that |kurt(x)| and therefore also kurt(x) goes to zero.

This is a weak version of the well known central limit theorem, which says that the distribution of a
mixture of infinitely many random variables converges to a Gauss distribution, which has zero kurtosis.

2.2 Cross-cumulants of statistically independent components are zero

2.3 Components with zero cross-cumulants are statistically independent

2.4 Rotated cumulants

2.5 Contrast function

2.6 Givens-rotations

2.7 Optimizing the contrast function

2.8 The algorithm
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