
Laplacian Matrix for

Dimensionality Reduction and Clustering

— Lecture Notes —

Laurenz Wiskott & Fabian Schönfeld
Institut für Neuroinformatik

Ruhr-Universität Bochum, Germany, EU

18 September 2019

Contents

1 Introduction 3

2 Intuition 3

2.1 Heat diffusion analogy of Laplacian eigenmaps . 3

2.2 Heat diffusion analogy of spectral clustering . 4

2.3 Heat diffusion equation for connected heat reservoirs . 5

2.4 Laplacian matrix . 5

2.5 Solution of the heat diffusion equation . 6

3 Formalism 7

3.1 Simple graphs . 7

3.2 Matrix representation . 8

3.3 Optimization problem . 9

3.4 Associated eigenvalue problem . 9

3.5 The role of the weighted normalization constraint . 10

3.6 Symmetric normalized Laplacian matrix . 11

3.7 Random walk normalized Laplacian matrix + . 12

3.8 Summary of mathematical properties . 13

© 2017–2019 Laurenz Wiskott (ORCID http://orcid.org/0000-0001-6237-740X, homepage https://www.ini.rub.de/

PEOPLE/wiskott/). This work (except for all figures from other sources, if present) is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License, see http://creativecommons.org/licenses/by-sa/4.0/. If figures are not
included for copyright reasons, they are uni colored, but the word ’Figure’, ’Image’, or the like in the reference is often linked
to a freely available copy.
Core text and formulas are set in dark red, one can repeat the lecture notes quickly by just reading these; � marks important
formulas or items worth remembering and learning for an exam; ♦ marks less important formulas or items that I would usually
also present in a lecture; + marks sections that I would usually skip in a lecture.
More teaching material is available at https://www.ini.rub.de/PEOPLE/wiskott/Teaching/Material/.

1

http://orcid.org/0000-0001-6237-740X
https://www.ini.rub.de/PEOPLE/wiskott/
https://www.ini.rub.de/PEOPLE/wiskott/
http://creativecommons.org/licenses/by-sa/4.0/
https://www.ini.rub.de/PEOPLE/wiskott/Teaching/Material/

4 Algorithms 14

4.1 Similarity graphs . 14

4.2 Laplacian eigenmaps (LEM) . 16

4.2.1 Motivation . 16

4.2.2 Objective . 16

4.2.3 Algorithm . 17

4.2.4 Sample applications . 17

4.3 Locality preserving projections (LPP) . 19

4.3.1 Linear LPP . 19

4.3.2 Sample application . 20

4.3.3 Nonlinear LPP . 21

4.4 Spectral clustering . 21

4.4.1 Objective . 21

4.4.2 Algorithm . 21

4.4.3 Sample application . 22

Requirements: I assume the student can already ...

... apply basic concepts from linear algebra, such as vector, matrix, matrix product, inverse matrix.

... solve an ordinary eigenvalue equation in linear algebra and explain intuitively what eigenvalues and
eigenvectors are.

... relate the eigenvalues and eigenvectors of a symmetric matrix to the solutions of the minimiza-
tion/maximization problem of the corresponding quadratic form.

... interpret a system of linear differential equations with constant coefficients.

Learning objectives: The learning objective of this unit is that the student can ...

... define basic notions of graph theory, namely graph, node, edge, and simple graph (Sec. 3.1).

... explain matrix representations of graphs, namely adjacency matrix, degree matrix, and Laplacian matrix
(Sec. 3.2).

... reproduce and interpret the generalized eigenvalue equation (45) of the Laplacian matrix and weighted
degree matrix and describe how it relates to the optimization problem of Laplacian eigenmaps and spectral
clustering (Eqs. 46–48).

... summarize and motivate mathematical properties 〈6,7,9,11〉 (Sec. 3.8) of the eigenvalues and eigenvectors
of the generalized eigenvalue equation (45).

... discuss the role of the normalization constraint (47) vs. (42) (Sec. 3.5).

... explain how a similarity graph can be generated from a set of data points (Sec. 4.1).

... explain how the Laplacian eigenmaps (LEM) algorithm (Sec. 4.2) and spectral clustering (Sec. 4.4) work.

... name a limitation of LEM and sketch how locality preserving projections (LPP) overcome it (Sec. 4.3).

2

1 Introduction

Many problems in machine learning can be expressed by means of a graph with nodes repre-
senting training samples and edges representing the relationship between samples in terms of
similarity, temporal proximity, or label information. Graphs can in turn be represented by matrices. A
special example is the Laplacian matrix, which allows us to assign each node a value that varies only little
between strongly connected nodes and more between distant nodes. Such an assignment can be used to
extract a useful feature representation, find a good embedding* of data in a low dimensional space,
or perform clustering on the original samples. In the following we first introduce the Laplacian matrix
and then present a small number of algorithms designed around it.

2 Intuition

This section is meant to give an intuitive introduction into the Laplacian matrix, Laplacian eigenmaps, and
spectral clustering. It is not necessary to understand the remainder of the lecture notes but hopefully makes
it easier. If you are short on time and rich in math and machine learning background, you might prefer to
skip it.

The Laplacian matrix can be used to model heat diffusion in a graph. Its theory can thus be understood
intuitively with the help of the heat diffusion analogy.

2.1 Heat diffusion analogy of Laplacian eigenmaps

First consider a very simple heat diffusion analogy for nonlinear dimensionality reduction from 2D to 1D
with the Laplacian eigenmap algorithm. Figure 1 (left) shows seven points in 2D, labeled A through
G. Their position might not be very meaningful but we assume that we have some similarity function
that induces relationships between these points. This results in a simple undirected graph
with seven nodes and six edges in this example. We see already that the graph is a simple linear graph, a
chain, but in high dimensions with many more nodes and a slightly more complicated structure, this might
not be so obvious anymore.

x
2

x
1

x
2

x
1

x
2

x
1

A

B

G

C

D

E

F

C

D

G

E

F

A

B

BC E G AFD

A

B

G

F

E

D

C

h

Figure 1: Heat diffusion analogy of the Laplacian eigenmaps algorithm.

The heat diffusion analogy now says that nodes are considered heat reservoirs and heat can diffuse
from one node to neighboring nodes via the edges, but no heat gets lost or added. So, let

*A remark on terminology: We use assign/assignment for giving data samples an associated value. These values implicitly
define a mapping from (possibly high-dimensional or non-vectorial) data samples to points in a low-dimensional space, the
mapped space. In LPP the mapping is defined more explicitly by a linear function. The collection of points in mapped space
form an embedding. Thus, all these terms refer to the same process.

3

us randomly initialize the nodes with arbitrary temperatures, Figure 1 (middle). What happens if we
wait? Well, it is obvious that heat diffuses from warmer to colder nodes until temperature has balanced out
completely. It is also obvious that local temperature differences balance out quickly, while global temperature
differences between distant nodes (distant in terms of the graph connectivity) take more time to balance
out. So if one measures the temperatures quite late in the process, one finds a distribution like
the one shown in Figure 1 (right). One end of the chain is slightly warmer than the other end, and
from one end to the other there is a monotonic decrease of temperature. This is interesting, because if one
now plots the seven points again, but now in a 1D space according to their temperature, one
gets the plot in Figure 1 (bottom right). The points are nicely ordered by their position in
the linear graph. This is much better for visualization and interpretation and possibly further processing
of the points, since the position in space now reflects similarity relations well. (The details of the spacing
reveal a flattening of the temperature profile towards the ends, an effect that takes more effort to understand
intuitively and is beyond the scope of this introduction.)

This is essentially how the Laplacian eigenmaps algorithm works, except that one does not really
use heat diffusion but finds the resulting heat distribution analytically in a more efficient and robust
way. It is also possible to map the points into a 2D or even higher-dimensional space by taking more than
one heat diffusion mode into account.

2.2 Heat diffusion analogy of spectral clustering

For a heat diffusion analogy of spectral clustering consider a different connectivity of the graph, like the
one shown in Figure 2 (left). The difference to the example above is that now the graph has two
disconnected subgraphs. No heat can diffuse from one subgraph to the other. If one waits long
enough, the temperature within each subgraph has completely balanced out, but the two
subgraphs have different temperature, because there is no edge between them, Figure 2 (right). If
one now plots the seven points in a 1D space according to their temperature, Figure 2 (bottom
right), all points of one subgraph cluster at one value and the points of the other subgraph cluster at another
value. Thus, in this space separating the two subgraphs is trivial.

h

x
2

x
1

x
2

x
1

x
2

x
1

A

B

G

F

E

D

C

A

B

G

C

D

E

F

C

D

B

E

F

G

A

A, C, E, G B, D, F

Figure 2: Heat diffusion analogy of spectral clustering.

This is essentially how spectral clustering works. In real data the clusters, i.e. subgraphs, might not
be completely disconnected, but with some tricks one can also deal with that.

The graphs in Figures 1 and 2 are drawn in a way that the position of the nodes actually has no
meaning at all. This is to emphasize that the edges are the only thing that matters for the result of
Laplacian eigenmaps and spectral clustering. In real world examples, however, spatial proximity often
plays an important role and edges are preferably inserted between neighboring data points.

4

2.3 Heat diffusion equation for connected heat reservoirs

How can we model heat diffusion mathematically, and how can we figure out the relevant temperature
distributions analytically? Heat diffusion is a continuous process, so we need a differential equation (DE)
for it. Since we consider heat diffusion between a discrete set of heat reservoirs rather than on a continuous
medium, the DE is a system of ordinary DEs and not a partial DE. It is linear, e.g. if you have twice as
much heat, diffusion will be twice as strong. And it is homogeneous, because if there is no heat, then there
is no diffusion. Thus we consider the following system of ordinary linear DEs

♦ ḣ(t) = −Lh(t) (1)

♦ ⇐⇒ ḣ1(t) = −L11h1(t)− L12h2(t)− L13h3(t) (2)

∧ ḣ2(t) = −L21h1(t)− L22h2(t)− L23h3(t) (3)

∧ ḣ3(t) = −L31h1(t)− L32h2(t)− L33h3(t) (4)

spelled out for three heat reservoirs, where h(t) is a nonnegative vector representing the temperatures
of the nodes as a function of time. L is a matrix representing the heat diffusion between the nodes,
and it will be explained in a moment.

Readers not so familiar with differential equations might find it easier to consider the temporally discretized
version of it,

h(t+ ∆t)− h(t)

∆t
= ḣ(t) (for ∆t→ 0) (5)

(1)
= −Lh(t) (6)

⇐⇒ h(t+ ∆t) = h(t)−∆tLh(t) (7)

= (I −∆tL)h(t) (8)

⇐⇒ h1(t+ ∆t) = h1(t)−∆t(L11h1(t) + L12h2(t) + L13h3(t)) (9)

∧ h2(t+ ∆t) = h2(t)−∆t(L21h1(t) + L22h2(t) + L23h3(t)) (10)

∧ h3(t+ ∆t) = h3(t)−∆t(L31h1(t) + L32h2(t) + L33h3(t)) (11)

which is an approximation of the differential equation ḣ(t) = −Lh(t), which is exact for ∆t→ 0.

2.4 Laplacian matrix

In either case, it is clear that L is responsible for any change of h and that the physics of the heat
diffusion process imposes constraints on L. If L = 0 then h(t) is constant, which would correspond to
three disconnected nodes (= heat reservoirs) that do not exchange any heat. A negative Lij indicates that
hi increases proportional to hj with factor −Lij . A positive Lij indicates that hi decreases proportional to
hj with factor −Lij .
We want that no heat gets lost or added to the system, thus

∑
i Lij = 0 must be fulfilled, as one can easily

verify by setting ḣ1(t) + ḣ2(t) + ḣ3(t) = 0 or h1(t + ∆t) + h2(t + ∆t) + h3(t + ∆t) = const for any values
of h1(t), h2(t), and h3(t). Since the heat one node gains must come from some other nodes, one can say
that −Lijhj (with negative Lij) indicates the amount of heat node i gains from node j for i 6= j. The term
−Ljjhj (with positive Ljj) indicates how much heat node j looses to the other nodes.

If we consider the situation that all three nodes are connected and one node, say Node 1, is hot and the
other two nodes are absolutely freezing, i.e. h2 = h3 = 0 (Kelvin not Celsius) then initially only L11, L21,
and L31 matter. It is intuitively clear that in this situation heat diffuses from Node 1 to Nodes 2 and 3, i.e.
h1 decreases and h2 as well as h3 increase proportionally to h1. This implies 0 < L11, indicating that Node 1
looses heat, and L21, L31 < 0, indicating that Nodes 2 and 3 gain heat from Node 1. If a connection would
be absent, e.g. between Nodes 2 and 1, then no heat diffuses between these two nodes and the corresponding
entry is zero, L21 = 0. If a node, let say Node 1, is not connected to any other node, then it cannot gain or
loose heat at all, resulting in L11 = 0. Thus, by symmetry arguments we have 0 ≤ Lii and Lij ≤ 0 ∀j 6= i.

Finally, it is clear that if two different nodes i and j have same temperature, hi = hj , then the heat −Lijhj
diffusing from node j to node i equals the heat −Ljihi diffusing from node i to node j, because otherwise one

5

node would spontaneously become warmer and the other cooler, which would allow us to build a perpetual
mobile. This implies Lij = Lji. Please notice here that if two connected nodes have same temperature, it
does not mean that no heat diffuses from one to the other, it only means that the heat flows cancel out each
other.

If we summarize the insights above we find that

Lij = Lji (L is symmetric) (12)∑
i

Lij
(12)
=
∑
j

Lij = 0 (rows and columns add up to zero) (13)

Lii ≥ 0 (diagonal elements are non-negative) (14)

Lij ≤ 0 ∀j 6= i (off-diagonal elements are non-positive) (15)

An example of a matrix with all these properties is

L =

 0.2 −0.2 0
−0.2 1.0 −0.8

0 −0.8 0.8

 (16)

The corresponding graph is shown in Figure 3.

2.5 Solution of the heat diffusion equation

Assume the eigenvectors uα and eigenvalues γα of the Laplacian matrix are known with

Luα = γαuα (17)

and ordered such that γ1 ≤ γ2 ≤ ... ≤ γI . It turns out that all eigenvalues are non-negative
and from (13) follows directly that one can chose u1 = (1, 1, ..., 1)T (usually normalized to norm one by
convention) with γ1 = 0 as the first eigenvector and -value.

For the discretized version of the differential equation it is interesting to see that

(8) = (I −∆tL)︸ ︷︷ ︸
=:P

uα = Iuα −∆tLuα (18)

(17)
= uα −∆tγαuα (19)

= (1−∆tγα)︸ ︷︷ ︸
=: ξα

uα (20)

Thus the uα are also eigenvectors of P but with eigenvalues ξα = (1−∆tγα) with 1 = ξ1 ≥ ξ2 ≥ ... ≥ ξI > 0
for small enough ∆t.

Because the Laplacian matrix is symmetric and real, the set of eigenvectors is complete, and
any initial temperature vector h(t = 0) can be written as a linear combination of the eigenvectors

h(t = 0) =
∑
α

ωαuα (21)

with some appropriate prefactors ωα.

From the theory of systems of homogeneous linear differential equations we know that the general solution
of (1) for this h(t = 0) is

♦ h(t) =
∑
α

ωα exp(−γαt)uα (22)

6

For those who prefer the discretized version of the differential equation one can show that

h(t = N∆t)
(8,18)
= PNh(0) (23)

(21)
= PN

∑
α

ωαuα (24)

=
∑
α

ωαP
Nuα (25)

(20)
=
∑
α

ωαξ
N
α uα (26)

In either case, if one waits long enough, only the first eigenvectors with eigenvalue γα = 0 respectively
ξα = 1 will still contribute to h(t), and one can show that if the graph is connected, only the contribution
of u1 survives indefinitely long, because exp(−γ1t) = exp(−0t) = 1 and ξN1 = 1N = 1 for any t. The
last eigenvector fading away is u2, and that is exactly the vector we are interested in for the
Laplacian eigenmaps algorithm, see Figure 1 (right).

If the graph is disconnected then it is intuitively clear that each subgraph balances out its heat over time,
but there is no heat exchange between subgraphs. The corresponding Laplacian matrix becomes a
block matrix with as many blocks on the diagonal as there are subgraphs. In the example above in Figure 2,
there are two subgraphs, and because of the block structure of the Laplacian matrix and the fact that rows
add up to zero, one can verify that the second eigenvector u2 = (1/4,−1/3, 1/4,−1/3, 1/4,−1/3, 1/4)T (usually
normalized to norm one by convention) is constant within each subgraph and has eigenvalue γ2 = 0.
This again reflects the temperature distribution that remains if one waits for a long time, and that is
exactly the vector we are interested in the spectral clustering algorithm, see Figure 2 (right).

In summary, the second eigenvector of the Laplacian matrix provides a nice 1D arrangement
of the nodes of a similarity graph. In practice one often also uses the third and possibly the
forth eigenvector to get visualizations in 2D or 3D, but that is not so easy to understand with this
intuitive explanation.

3 Formalism

After the intuitive explanation we now consider Laplacian eigenmaps and spectral clustering more
directly and more formally. For both algorithms data must first be represented as a graph. Nodes represent
data samples and edges represent similarities between data samples. The samples could be anything, e.g.
words, persons, or melodies, they need not be vectors in a vector space. We just need a non-negative function
that measures similarity between two data samples. And this function does not even need to be consistent
with a metric. We first introduce some notions from graph theory and then consider the optimization
problem.

3.1 Simple graphs

A graph G = (V,E) is a set of nodes (or vertices or points) V = {v1, ..., vI} and a set of edges E =
{e1, ..., eL}. An edge el connects two nodes vi and vj and is therefore defined by a pair of nodes. Edges
may be directed , going from node vi to node vj , indicated by el = (vi, vj). Edges may also be undirected , in
which case the order of the vertices does not matter and we can write el := {vi, vj}, where the curly brackets
imply that the order does not matter. Simple graphs are undirected graphs without loops, which are
edges that connect a node with itself, and no parallel edges, which are edges that connect the same pair
of nodes. Here we consider mainly simple graphs.

Further reading: (Wikipedia, 2017a).

7

3.2 Matrix representation

Graphs can be conveniently represented by real matrices. The adjacency matrix A = (Aij) of an
undirected graph is I × I and defined as

� Aij :=

{
1 if {vi, vj} ∈ E
0 otherwise

(27)

i.e. it has a one in entry Aij if and only if nodes vi and vj are connected with each other. Matrix A is
naturally symmetric, since the edges are not directed.

The degree matrix D = (Dij) of an undirected graph is a diagonal matrix, where the diagonal
entries Dii indicate the number of edges connected to node vi.

In context of the Laplacian matrix, we generalize these definitions to weighted graphs, where the
edges are labeled with a real (positive) number indicating their weight Wij . If one simply replaces the 1
values in (27) by these weights, then A becomes the (edge) weight matrix W , and the weighted
degree matrix D = (Dij) gets the sum over all weights of the edges converging on a node in
their diagonal entries.

� Dii :=
∑
j

Wij =
∑
j

Wji (28)

1

2

3

1

2

0.2

0.8

Figure 3: Example of a simple, weighted, undirected graph. Edges are numbered in blue, their weights
are shown in black. Weights do not need to add up to one, like here for Node 2.

Figure 3 shows a simple weighted graph. The weighted adjacency matrix, or weight matrix, of the undirected
graph is

W =


v1 v2 v3

v1 0 0.2 0
v2 0.2 0 0.8
v3 0 0.8 0

 (29)

The weighted degree matrix of the undirected graph is

D =


v1 v2 v3

v1 0.2 0 0
v2 0 1.0 0
v3 0 0 0.8

 (30)

The Laplacian matrix L is defined as the difference between weighted degree matrix D and weight matrix
W

� L = D −W . (31)

It is easy to verify that it has all the properties (12–15) derived in Section 2.4 from the heat diffusion analogy.

The Laplacian matrix for the example above is

L =

 0.2 −0.2 0
−0.2 1.0 −0.8

0 −0.8 0.8

 (32)

8

3.3 Optimization problem

The objective of Laplacian eigenmaps as well as spectral clustering is to assign similar values to
similar nodes, i.e. strongly connected nodes, and dissimilar values to nodes that are not similar. This is a
non-trivial operation, since similarity is a property of a pair of nodes, or an edge, while value is a property
of a single node. It is not guaranteed that there is a good solution at all. Consider, for instance, three nodes
A, B, and C. If A and B are very similar as well as B and C, but A and C are very dissimilar, then there
are no values that could reflect that. However, reasonable similarity measures usually do not lead to such
conflicts, definitely not those inducing a proper metric. In any case, the objective is to

� minimize
1

2

∑
ij

(ui − uj)2Wij (33)

♦ subject to 1Tu = 0 (zero mean) (34)

♦ and uTu = 1 (unit variance) (35)

� or subject to 1TDu = 0 (weighted zero mean) (36)

� and uTDu = 1 (weighted unit variance) (37)

with u = (u1, u2, ..., uI)
T and 1 = (1, 1, 1, ..., 1)T indicating the one-vector. Objective (33) favors solutions

where strongly connected nodes with a large edge weight Wij have similar values ui and uj . Constraints (34)
and (35) in conjunction avoid the trivial constant solution, which implicitly guarantees that nodes that are
not similar get assigned dissimilar values. Constraints (36) and (37) have the same function but imply some
normalization, see Section 3.5.

If we need more than one solution in order to map the nodes into a higher dimensional space, we add
a subscript index to u and solve the same optimization problem multiple times subject to the additional
constraint

♦ uTβuα = 0 ∀β < α (decorrelation to previous solutions) (38)

� or uTβDuα = 0 ∀β < α (decorrelation to previous solutions) (39)

for the second and later solutions uα to make them different (orthogonal) to the previous solutions uβ .

3.4 Associated eigenvalue problem

It is known that the normalized eigenvectors uα of the ordinary eigenvalue equation

♦ Luα = γαuα (40)

ordered by increasing eigenvalues γα solve the optimization problem

♦ minimize uTαLuα =
1

2

∑
ij

(uα,i − uα,j)2Wij (41)

♦ subject to uTαuα = 1 (unit norm) (42)

♦ and uTβuα = 0 ∀β < α (order and orthogonality) (43)

where constraint (43) induces an order such that u1 is the optimal solution without any orthogonality
constraint (only the unit norm constraint), u2 is the optimal solution with the additional constraint of being
orthogonal to u1, u3 is the optimal solution with the additional constraint of being orthogonal to u1 and
u2, etc. Constraints (42, 43) can be combined to uTβuα = δβα ∀β ≤ α. Identity (41) is left to the reader
as an exercise. If one orders the eigenvalues by ascending rather than descending value, the corresponding
eigenvectors solve the maximization rather than minimization problem. The rest should be known, for
instance from principal component analysis.

The zero mean constraint (34) is implicit here. Since the first solution u1 is a scaled version of 1, Con-
straint (43) with β = 1 is equivalent to (34). The solutions of interest thus start with index 2 rather
than 1.

9

Since
uTαLuα

(40)
= uTαγαuα = γαu

T
αuα

(42)
= γα (44)

the eigenvalues are the optimal values of the objective function.

In the algorithms below the constraint is usually wTDw = 1 rather than uTu = 1 (we switch here from
u to w to indicate solutions with this weighted normalization). Thus we note that the appropriately
normalized eigenvectors wα of the generalized eigenvalue equation

� Lwα = λαDwα (45)

ordered by increasing eigenvalues λα solve the optimization problem

� minimize wT
αLwα =

1

2

∑
ij

(wα,i − wα,j)2Wij (46)

� subject to wT
αDwα = 1 (weighted unit norm) (47)

� and wT
βDwα = 0 ∀β < α (order and weighted orthogonality) (48)

The derivation (44) does not hold here, since the eigenvectors must have weighted unit norm, not standard
unit norm. But still we find analogously

wT
αLwα

(45)
= wT

αλαDwα = λαw
T
αDwα

(47)
= λα (49)

Thus, the eigenvalues are the value of the objective function for the different eigenvectors. It is intuitively
clear that eigenvectors with small eigenvalue are smooth in the sense that connected nodes tend
to have similar values while eigenvectors with large eigenvalue are more rugged, i.e. connected nodes tend
to have different values.

Further reading: (Wikipedia, 2017c).

3.5 The role of the weighted normalization constraint

What is the difference between the constraints uTαuα = 1 (42) and wT
αDwα = 1 (47)? Since D is a diagonal

matrix, this simply means that in the constraint the components of the generalized eigenvectors get weighted
by
√
Dii (28) (the square root comes from the fact that in wT

αDwα the Dii has to be equally distributed
over the two wα). For the term wiDiiwi to have the same effect size in the constraint, a component wi
with large Dii must be smaller than one with a small Dii. This is illustrated in Figure 4 by the green solid
ellipse vs the blue dashed circle. The latter is the set of points with uTαuα = 1, the former the set with
wT
αDwα = 1 with large Dii and small Djj .

In the figure it is assumed that the determinant of D is one. That does not need to be the case. It could
be any other positive value, depending on how strong the weights of the edges are. However, a consistent
scaling of the weights does not change the solution, so we can assume w.l.o.g. that they are scaled such that
|D| = 1.

While the constraint differs, the objective function (41, 46) is the same in both cases. It takes the form of an
unisotropic paraboloid, like a squeezed champagne glass, indicated in Figure 4 by dotted ellipses. Minimizing
it under the constraint means finding the point on the blue circle or green ellipse that comes closest to the
inner ellipses. To the extent the Dii differ, the components with larger Dii are favored over components
with smaller Dii, because they allow the vector wα to move closer to the origin, where the true minimum of
the objective function with value 0 lies.

However, this does not mean that all components of wα with large Dii become larger relative to those with
small Dii. That depends also on the objective function. But the general tendency is that the change from
constraint uTαuα = 1 to constraint wT

αDwα = 1 makes the values of highly connected nodes (with large
Dii) larger relative to less connected nodes (with small Dii).

Why might that be useful? Imagine a square lattice of 7×7 nodes, connected with their four nearest neighbors
with equal edge weights one. This looks like a pretty good connectivity to represent the 2D layout of the

10

iilarge D direction

small D directionjj

Figure 4: Visualization of the role of the constraint on the optimization problem. The dotted ellipses
illustrate the quadratic form being minimized (41, 46), which is the same for both problems. The blue
dashed circle and green solid ellipse illustrate the constraints (42) and (47), respectively. The corresponding
arrow indicates the optimal solution, which is the point on the circle or ellipse that comes closest to the
inner dashed ellipses.

grid. Now, imagine in the right half of the grid, each node is connected to its eight nearest neighbors instead
of four. Both, the four- as well as the eight-neighbor connectivity, are perfectly fine representations of the 2D
layout. But because the nodes on the right side have more edges, heat would diffuse faster and temperature
would equalize more quickly, leading to more similar values, the nodes would move closer together in the
embedding. If one uses constraint wT

αDwα = 1 this advantage of the more densely connected half would be
somewhat compensated by scaling up the values, which also leads to larger differences. This leads to a value
distribution that better reflects the 2D layout and is less influenced by the different density of connections
between left and right half.

It is probably also possible to construct examples where the constraint uTαuα = 1 gives more desirable
results. But at least it should be clear now what the effect of the constraint wT

αDwα = 1 is, it somewhat
counteracts the effect of systematically strong (or weak) connections in a region of the graph.
This does not tell much about the effects on a more microscopic level. But it is clear that it makes no
sense to change the value of a single highly connected node and make it too different from the values of its
neighbors, because that really contributes to a bad value in the objective function.

3.6 Symmetric normalized Laplacian matrix

For the algorithms below, we consider the eigenvalues and -vectors of the generalized eigenvalue
equation Lwα = λα4Dwα. Since most of us are more familiar with the ordinary eigenvalue equation, it
is interesting to note that one can convert the generalized eigenvalue equation into an ordinary
one and back again. This allows us to transfer what we know about ordinary eigenvalue equations to the
generalized ones.

First assume Dii 6= 0 ∀i (0 ≤ Dii is true in any case) and define

♦ d := (D11, ..., DII)
T (50)

♦ d := (
√
D11, ...,

√
DII)

T (51)

♦ d := (1/
√
D11, ..., 1/

√
DII)

T (52)

♦ D := diag(d) = DT (53)

♦ D := diag(d) = D
T

(54)

♦ D := diag(d) = DT (55)

so that, for instance, DD = DD = I and DD = D.

11

Now we convert the generalized eigenvalue equation into an ordinary one.

� Lwα
!
= λαDwα | D· (56)

♦ ⇐⇒ DLDD︸︷︷︸
= I

wα = DλαDD︸︷︷︸
=D

wα (since D is invertible) (57)

♦ ⇐⇒ DLD︸ ︷︷ ︸
=: L̂

Dwα︸ ︷︷ ︸
=: ŵα

= λαDD︸︷︷︸
= I

Dwα︸ ︷︷ ︸
=: ŵα

(58)

� ⇐⇒ L̂ŵα = λαŵα (59)

with

� ŵα = Dwα (60)

� ⇐⇒ wα = Dŵα (61)

and the symmetric normalized Laplacian matrix

� L̂ := DLD (62)

Thus, if and only if wα is an eigenvector of the generalized eigenvalue equation with eigenvalue
λα, then ŵα is an eigenvector of the ordinary eigenvalue equation with same eigenvalue λα. It
is sometimes helpful to switch back and forth between these two views.

For the example above we find

L̂ =


÷
√

0.2 ÷
√

1.0 ÷
√

0.8
↓ ↓ ↓

÷
√

0.2→ 0.2 −0.2 0

÷
√

1.0→ −0.2 1.0 −0.8

÷
√

0.8→ 0 −0.8 0.8

 =

 1.0 −
√

0.2 0

−
√

0.2 1.0 −
√

0.8

0 −
√

0.8 1.0

 (63)

where ÷
√
· indicates multiplication with D from the left along the rows and from the right along the columns.

It is easy to see that L̂ii = 1 by construction, since DLD = D(D−W)D = (I −DWD) and DWD has
only zeroes on the diagonal. But the rows and columns do not add up to zero anymore.

The objective function related to the eigenvalue equation of the symmetric normalized Laplacian matrix is

ŵT
α L̂ŵα

(62)
= ŵT

αDLDŵα (64)

= (Dŵα)TLDŵα (since D is diagonal, thus D = DT) (65)

(41)
=

1

2

∑
ij

((Dŵα)i − (Dŵα)j)
2Wij (66)

(55,52)
=

1

2

∑
ij

(
ŵα,i√
Dii

− ŵα,j√
Djj

)2

Wij (since D is diagonal) (67)

3.7 Random walk normalized Laplacian matrix +

Another possibility to convert the generalized eigenvalue equation into an ordinary one is simply to multiply
(45) from the left with the inverse of the weighted degree matrix.

♦ Lwα
(45)
= λαDwα | D−1· (68)

♦ ⇐⇒ D−1L︸ ︷︷ ︸
=: L̂rw

wα = λαwα (since D is invertible) (69)

♦ ⇐⇒ L̂rwwα = λαwα (70)

L̂rw := D−1L is the random walk normalized Laplacian matrix and has the same eigenvalues
and eigenvectors as the generalized eigenvalue equation of the Laplacian matrix. Its main
disadvantage is that it is non-symmetric.

12

For the example above we find

L̂rw =

 ÷ 0.2→ 0.2 −0.2 0
÷ 1.0→ −0.2 1.0 −0.8
÷ 0.8→ 0 −0.8 0.8

 =

 1.0 −1.0 0
−0.2 1.0 −0.8

0 −1.0 1.0

 (71)

where ÷· indicates multiplication with D−1 from the left along the rows. Notice that L̂rw
ii = 1 and that the

rows, but not the columns, add up to zero. P := I − L̂rw is a right stochastic matrix (Wikipedia, 2017e),
which can be interpreted as a transition matrix for a random walk between the nodes of the graph. Therefore
the name. We are not sure how useful this intuition is, since the right stochastic matrix has to be multiplied
from the right, in order to simulate a random walk, but in the eigenvalue equation L̂rw is multiplied from
the left.

In what follows we focus on L̂ rather than L̂rw, because the non-symmetry makes the latter more difficult
to deal with.

3.8 Summary of mathematical properties

The Laplacian matrix appears in a multitude of different algorithms, three of which will be discussed in this
lecture: Laplacian eigenmaps (LEM), locality preserving projections (LPP), and spectral clustering. When
using the Laplacian matrix in an algorithm, we are usually interested in its eigenvectors and eigenvalues.
The set of eigenvalues of a matrix is referred to as its spectrum.

The Laplacian matrix, its eigenvectors, and its spectrum have the following properties:

1. L and L̂ are both symmetric (and real). The symmetry of L follows directly from equation (31) since
D is diagonal and W is symmetric. The symmetry of L̂ follows from equation (62) and the symmetry of
L. See (32) and (63) for the example above.

2. L and L̂ each have a complete set of orthogonal eigenvectors uα and ŵα, respectively, with real
eigenvalues. This is true for any real symmetric matrix, see Property 〈1〉.

3. L and L̂ are both positive semi-definite. For L this follows directly from (41) and the fact that all
weights are positive; for L̂ this follows from equation (62) and the fact that it holds for L.

4. L and L̂ have only non-negative eigenvalues. This follows from Property 〈3〉. Note, however, that
the eigenvalues of L and L̂ may be different. We indicate the eigenvalues of L by γα and those of L̂ by
λα.

5. L̂ŵα = λαŵα and Lwα = λαDwα have the same set of eigenvalues λα and their eigenvectors
are related by wα = Dŵα ⇔ ŵα = Dwα, see Section 3.6.

6. The generalized eigenvalue equation Lwα = λαDwα has only non-negative eigenvalues λα and a
full set of eigenvectors wα that are orthogonal with respect to the inner product wβDwα for

β 6= α. This follows from Properties 〈2,4〉 with Property 〈5〉, since ∀β 6= α : 0
〈2〉
= ŵT

β ŵα
(60)
= wT

βDDwα =
wβDwα.

7. 1 := (1, 1, ..., 1)T (the one-vector) is a solution of the ordinary eigenvalue equation Luα = γαuα as
well as the generalized eigenvalue equation Lwα = λαDwα with eigenvalue 0. This follows directly
from the definition of L (31), since its rows sum up to zero, and because the two eigenvalue equations are
identical for γα = λα = 0. We chose the appropriately normalized one-vector to be the first eigenvectors
u1 = 1/

√
1T1 and w1 = 1/

√
1TD1 with γ1 = λ1 = 0.

8. d, see (51), is a solution of the ordinary eigenvalue equation L̂ŵα = λαŵα with eigenvalue 0. This follows

from Property 〈7〉 and equation (61) since Dd = 1
〈7〉
= w1. We chose this ’square-root degree-vector’

normalized to norm one to be the first eigenvector ŵ1 = d/

√
d
T
d with λ1 = 0.

13

9. Property 〈7〉 generalizes to several eigenvalues with eigenvalue 0 for disconnected graphs (the proof is left
to the reader as an exercise). If a graph has C subgraphs that are intrinsically connected but not
mutually, then L has C orthogonal eigenvectors with eigenvalue 0. Each of these eigenvectors has
identical values within each of the connected subgraphs and possibly different values between subgraphs.
Since it is possible to arbitrarily rotate a set of eigenvectors with identical eigenvalue and still get a set
of eigenvectors, it is possible to chose the eigenvectors with eigenvalue 0 such that each one
has the value 1 within a subgraph and value 0 on all other nodes. Such vectors are referred to
as indicator vectors (Wikipedia, 2016). These indicator vectors can then be normalized to fulfill the
convention of normalized eigenvectors.

10. If we do not perform the rotation mentioned in Property 〈9〉 to get indicator vectors, but rather choose the
first eigenvector to be the one-vector, then all higher eigenvectors of the ordinary eigenvalue equation

Luα = γαuα have zero mean, since ∀α 6= 1 : 0
〈2〉
= uT1 uα

〈7〉⇐⇒ 0 = 1Tuα =
∑
j uαj by Properties 〈2,7〉.

11. Similarly, if the first eigenvector is the one-vector all higher eigenvectors of the generalized eigenvalue

equation Lwα = λαDwα have weighted zero mean since ∀α 6= 1 : 0
〈6〉
= wT

1 Dwα
〈7〉⇐⇒ 0 = 1TDwα =∑

j wαjDjj by Properties 〈6,7〉.

12. The eigenvectors are solutions to the optimization problems and the eigenvalues are the
values that the objective functions assume for the optimal solutions, see Section 3.4. Equation
(44) yields uTαLuα = γα, and ŵT

α L̂ŵα = λα holds analogously. For the generalized eigenvalue equation,
we find (49) wT

αLwα = λα.

Further reading: (Wikipedia, 2017b).

4 Algorithms

4.1 Similarity graphs

The algorithms presented in the following are all based on the properties of the Laplacian matrix discussed
above. In order to take advantage of the Laplacian matrix, though, any input data first has to be
represented as a graph, commonly referred to as a similarity graph : A simple graph where the
nodes represent individual data samples and edge weights denote the similarity (or distance) between two
connected nodes, i.e. data samples. Appropriate similarity metrics depend on the problem and can be as
simple as the Euclidean or Manhattan distance between two points.

There are different ways to construct a similarity graph, depending on the problem at hand (e.g.
Belkin and Niyogi, 2003, Sec. 2; He and Niyogi, 2004, Sec. 2.2; Von Luxburg, 2007, Sec. 2). Three common
methods are ε-neighborhood, k-nearest neighbors, and fully connected graphs:

� ε-neighborhood: Two nodes are connected if the distance between them is smaller than a
given threshold ε. Often ε is chosen so small that the distance values within an ε-neighborhood do not
carry much useful information. In this case edges are often weighted binary, i.e., with 1 or 0 depending
on whether the data samples in question are close enough or not, respectively.

� k-nearest neighbors: Node vi is connected to vj if vj is among the k nearest neighbors of
vi. Note that this neighborhood relation is not symmetric and yields a directed graph, thus some
cleanup is required. To arrive at a simple graph we take each unilateral edge that has no mirrored
counterpart and either remove it or keep it and set it as bilateral. Removal results in a graph where each
node has at most k neighbors (mutual k-nearest neighbor graph), while setting unilateral edges to bilateral
results in a graph where each node has at least k neighbors (k-nearest neighbor graph). All edges are
weighted by the similarity between the two nodes they connect. Binary weighting, as in the
preceding method, is more dangerous here, because it cannot be guaranteed that connected nodes are
close to each other.

14

W
ei

g
h
t

m
a
tr

ix
:
W

(2
8
)

D
eg

re
e

m
a
tr

ix
:
D

:
D
ij

:=
δ i
j
∑ j

W
ij

(5
5
)

D
:=

d
ia

g
(1
/
√
D

1
1
,.
..
,1
/
√
D
I
I
)

(3
1
)

L
a
p

la
ci

a
n

m
a
tr

ix
:
L

=
D
−

W
(6

2
)

S
y
m

.
n

o
rm

.
L

a
p

l.
m

a
tr

ix
:
L̂

:=
D

L
D

〈1
〉

Is
sy

m
m

et
ri

c:
L

=
L
T

〈1
〉

Is
sy

m
m

et
ri

c:
L̂

=
L̂
T

〈3
〉

Is
p

o
si

ti
v
e

se
m

i-
d

efi
n

it
e:

x
T
L
x
≥

0
∀
x

〈3
〉

Is
p

o
si

ti
v
e

se
m

i-
d

efi
n

it
e:

x
T
L̂
x
≥

0
∀
x

(4
0
)

O
rd

in
a
ry

ei
g
en

v
a
lu

e
eq

u
a
ti

o
n

:
L
u
α

=
γ
α
u
α

(4
5
)

G
en

er
a
li
ze

d
ei

g
en

v
a
lu

e
eq

u
a
ti

o
n

:
L
w
α

=
λ
α
D

w
α

(5
9
)

O
rd

in
a
ry

ei
g
en

v
a
lu

e
eq

u
a
ti

o
n

:
L̂
ŵ
α

=
λ
α
ŵ
α

O
p

ti
m

iz
a
ti

o
n

p
ro

b
le

m
:

m
in

im
iz

e
O

p
ti

m
iz

a
ti

o
n

p
ro

b
le

m
:

m
in

im
iz

e
O

p
ti

m
iz

a
ti

o
n

p
ro

b
le

m
:

m
in

im
iz

e

(4
1
)

u
T α
L
u
α

=
1 2

∑ ij
(u
α
,i
−
u
α
,j

)2
W
ij

(4
6
)

w
T α
L
w
α

=
1 2

∑ ij
(w
α
,i
−
w
α
,j

)2
W
ij

(6
7
)

ŵ
T α
L̂
ŵ
α

=
1 2

∑ ij

(ŵ α
,i

√
D
i
i
−

ŵ
α
,j

√
D
j
j

) 2 W
ij

(4
2
,4

3
)

su
b

je
ct

to
u
T β
u
α

=
δ β
α
∀β
≤
α

(4
7
,4

8
)

su
b

je
ct

to
w
T β
D

w
α

=
δ β
α
∀β
≤
α

su
b

je
ct

to
ŵ
T β
ŵ
α

=
δ β
α
∀β
≤
α

T
ri

v
ia

l
fi

rs
t

so
lu

ti
o
n

:
T

ri
v
ia

l
fi

rs
t

so
lu

ti
o
n

:
T

ri
v
ia

l
fi

rs
t

so
lu

ti
o
n

:

〈7
〉

u
1

=
1
/
√
1
T
1

w
it

h
γ
1

=
0

〈7
〉

w
1

=
1
/
√
1
T
D

1
w

it
h
λ
1

=
0

〈8
〉

ŵ
1

=
d
/

√ d
T
d

w
it

h
λ
1

=
0

O
b

je
ct

iv
e

fu
n

ct
io

n
v
a
lu

e:
O

b
je

ct
iv

e
fu

n
ct

io
n

v
a
lu

e:
O

b
je

ct
iv

e
fu

n
ct

io
n

v
a
lu

e:

〈1
2
〉,

(4
4
)

u
T α
L
u
α

=
γ
α

〈1
2
〉,

(4
9
)

w
T α
L
w
α

=
λ
α

〈1
2
〉

ŵ
T α
L̂
ŵ
α

=
λ
α

R
el

a
ti

o
n

b
et

w
ee

n
tw

o
so

lu
ti

o
n

s:

〈5
〉,

(5
6
,5

9
)

λ
α

=
λ
α

〈5
〉,

(6
1
)

w
α

=
D

ŵ
α

T
a
b

le
1
:

O
ve

rv
ie

w
ov

er
d

iff
er

en
t

L
a
p

la
ci

a
n

m
a
tr

ic
es

,
ei

g
en

va
lu

e
eq

u
a
ti

o
n
s,

o
p

ti
m

iz
a
ti

o
n

p
ro

b
le

m
s,

a
n

d
so

lu
ti

o
n

s.

15

� Fully connected: To construct a fully connected graph each data sample is simply connected to all
others. In this case, using binary weights renders the graph entirely meaningless. A fully connected graph
always requires weighting the edges with a similarity function (e.g. a Gaussian similarity function
for vectorial data wij = wji = s(xi,xj) = exp(−||xi − xj ||2/(2σ2)) where σ defines the extent of local
neighborhoods).

4.2 Laplacian eigenmaps (LEM)

4.2.1 Motivation

Many algorithms work only on vectorial data and are limited in the dimensionality they can process efficiently.
This causes problems if one has data that is either not vectorial, such as text, or too high dimensional, such
as images, or both. If one can define a similarity function on the data, yielding a scalar similarity value
for each pair of data samples, the Laplacian eigenmaps algorithm can provide a low-dimensional vectorial
embedding of the data that tends to preserve similarity relationships and allows to apply other algorithms
to the data that would not be applicable directly (Belkin and Niyogi, 2003). Laplacian eigenmaps are also
very good for a 2- or 3-dimensional visualization of data.

Example: Imagine a drone hovering through the air while equipped with a downward facing camera.
Using the high dimensional pictures from its camera, we could, in theory, precisely compute the drone’s
current position and elevation. Unfortunately, the space of all possible high dimensional images is effectively
intractable. Luckily though, we are merely interested in a small subset of this space, namely only those
images the drone’s camera can actually produce in a particular environment. And while each data point
of this vastly smaller subset still is of the original, high dimensionality, it can be fully described by six
dimensions alone: the position and orientation of the drone in 3D space. Laplacian eigenmaps can be used
to find a low dimensional embedding of the images that still permits extracting positional and orientation
information.

4.2.2 Objective

The objective of the Laplacian eigenmaps algorithm is to find an embedding of a set of I
data samples (do not need to be vectors, but there must be a similarity function) in a low-dimensional
vector space {y1, ...yI} such that samples with high similarity are close to each other in the
embedding. For dimensionality M = 1, i.e. an embedding in only a 1-dimensional space, this objective
translates into minimizing

1

2

∑
ij

(yi − yj)2Wij (72)

where the yi are the values assigned to the samples and Wij indicates the similarity between two samples. We
have already seen above how this optimization problem is solved by the second eigenvector of the Laplacian
matrix, (41) or (46) depending on the constraint. Each additional eigenvector adds one orthogonal (meaning
the values are uncorrelated) dimension to the embedding provided by the other eigenvectors already. The
quality of the embedding induced by each eigenvector is given by its associated eigenvalue, which directly
relates to the actual value of sum (72). The best M-dimensional embedding is thus given by the first
M eigenvectors wα of the Laplacian matrix with smallest eigenvalues (excluding the first one).

Please notice that the dimension of the eigenvectors corresponds to the number I of data points, because the
Laplacian matrix is I× I by construction. Thus, if you arrange the first M eigenvectors as rows in a matrix,
this matrix will be M × I and the column vectors are the data points yi in the M -dimensional embedding.
For instance, three data samples embedded in a 2-dimensional space with LEM using the ordinary eigenvalue
problem (for simplicity) could yield

y1 y2 y3

↓ ↓ ↓
u2 → −1/

√
2 0 +1/

√
2

u3 → −1/
√

6 +2/
√

6 −1/
√

6

 (73)

16

As usual, we have dropped u1, because it has equal components throughout, e.g. (1, 1, 1)T /
√

3; u2 and u3

have zero mean, because they need to be orthogonal to u1; and u2 and u3 are orthogonal to each other as
well.

We now have all the required components to formulate the Laplacian eigenmaps algorithm.

4.2.3 Algorithm

Laplacian eigenmaps algorithm (Belkin and Niyogi, 2003)

1. Given a set of I data samples, construct a similarity graph G according to one of the methods described
in Section 4.1.

2. Construct the I × I weight matrix W , degree matrix D (28), and Laplacian matrix L (31) for G.

3. Compute the first M + 1 eigenvectors wα of the generalized eigenvalue problem

♦ Lwα = λαDwα (74)

ordered by increasing eigenvalues.

4. An M-dimensional representation of data sample i is now given by (w2,i, ..., wM+1,i)
T .

4.2.4 Sample applications

Figure 5 shows a toy example of dimensionality reduction of 1000 images of size 40×40 with
either a vertical or a horizontal bar (Belkin and Niyogi, 2002). One can clearly see how the images with
the horizontal bar are separate from the images with the vertical bar. It would be interesting to see a three
dimensional Laplacian eigenmap, because presumably the red and blue points would each form a square
manifold representing x- and y-position. A projection onto the first two principal components is shown for
comparison.

(Belkin and Niyogi, 2002, Fig. 1, URL)1

Figure 5: Dimensionality reduction of 1000 40×40 images with either a vertical or a horizontal bar (plotted
together but distinguished by color for illustrative purposes, the original is in grayscale). Left: Two input
images superimposed, one with a horizontal bar (red) one with a vertical bar (blue). Middle: Result of LEM.
Right: Result of PCA for comparison.

Figures 6 and 7 show an application of Laplacian eigenmaps to a set of 300 frequently used
words (Belkin and Niyogi, 2003). Each word was represented by a 600-dimensional vector indicating how
often any of the other words was found to the left or to the right of the considered word. Similarity was
defined based on these 600-dimensional vectors. Zooming into Figure 7 shows that grammatically
closely related words are grouped together.

Further reading: (Belkin and Niyogi, 2003).

17

http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf

(Belkin and Niyogi, 2003, Fig. 4, URL)2

Figure 6: Dimensionality reduction for 300 frequently used words from their word context data.

18

https://pdfs.semanticscholar.org/989a/f45f8242b96cecb91d48b85620e7322e4aa7.pdf

(Belkin and Niyogi, 2003, Fig. 5, URL)3

Figure 7: Zoom-in into the three subregions marked in Figure 6. Left infinitives, middle prepositions, and
right mostly modal and auxiliary verbs.

4.3 Locality preserving projections (LPP)

4.3.1 Linear LPP

Laplacian eigenmaps have the disadvantage that they only provide values for the data used during
training. There is no straight forward way to process new data. This can be changed if the nodes vi are
data points in Euclidean space vi = xi ∈ RN and the values of the eigenvectors wα are approximated
by linear functions in the data points (He and Niyogi, 2004). Since the values of the nodes are now
computed with a linear function rather than assigned freely, new data can be processed by applying the
same linear function. On the training data the linear function yields the values of the nodes as follows

♦ wα,i = xTi zα (75)

� ⇐⇒ wα = XTzα (76)

� with data X := (x1,x2, ...,xI) (77)

The vectors zα are the variables to be optimized. Inserting this in (46) and the corresponding con-
straints (47,48) yields

� minimize wT
αLwα

(76)
= zTα XLXT︸ ︷︷ ︸

=:L′

zα = zTαL
′zα (78)

♦ subject to 1 = wT
αDwα

(76)
= zTα XDXT︸ ︷︷ ︸

=:D′

zα = zTαD
′zα (79)

♦ and 0 = wT
βDwα

(76)
= zTβ XDXT︸ ︷︷ ︸

=:D′

zα = zTβD
′zα ∀β < α (80)

This optimization problem can again be solved through a generalized eigenvalue problem, much like
the original one. Notice, however, that the eigenvalues and the approximated eigenvectors wα are not
necessarily identical to those of the original eigenvalue problem, because wα ∈ RI is not free but constrained
to be a linear function in the xi ∈ RN . Notice also that this problem is not of the dimensionality of the

19

https://pdfs.semanticscholar.org/989a/f45f8242b96cecb91d48b85620e7322e4aa7.pdf

number I of data points as before but only of the dimension N of the data points, which is usually much
smaller and, consequently makes this approximation more computationally efficient. For instance, if you
have 100 data points in 3D, the problem is 3-dimensional not 100-dimensional as for the LEM algorithm.
The main advantage, however, is that new data points xj can easily be mapped into the low-dimensional
space by applying the linear function xTj zα. Performing Laplacian eigenmaps with this linear approximation
is referred to as locality preserving projections (LPP).

4.3.2 Sample application

An application of LPP to face images of a single person is shown in Figure 8 (He and Niyogi,
2004). Even though the mapping is only linear, LPP still captures some prominent variations and orders
the images nicely in 2D. The person looks to the left (or right) at the top (or bottom) of the plot, and it
smiles on the right side while it makes faces on the left.

(He and Niyogi, 2004, Fig. 3, URL)4

Figure 8: Dimensionality reduction of face images of a single person down to two dimensions with linear
LPP. Face images in the plot indicate what some points stand for and the line of faces at the bottom
corresponds to the line of data points on the right.

20

http://papers.nips.cc/paper/2359-locality-preserving-projections.pdf

4.3.3 Nonlinear LPP

LPP can be generalized to nonlinear functions by adding a nonlinear expansion prior to the
algorithm. Assume f(x) is such a nonlinear expansion from RN → RP with N � P , then one can define

wα,i = f(xi)
Tzα (81)

⇐⇒ wα = F Tzα (82)

with F := (f(x1),f(x2), ...,f(xI)) (83)

and then run the algorithm as before. Notice that now zα ∈ RP rather than RN .

Further reading: (He and Niyogi, 2004).

4.4 Spectral clustering

4.4.1 Objective

Spectral clustering is an umbrella term for a number of algorithms that use the eigenvectors of
the Laplacian matrix to perform clustering on a given set of data points. In particular, spectral
clustering is often used in image processing to identify connected parts of a given image and, ideally, identify
the extent of the individual components of an image, a process called image segmentation.

As illustrated intuitively in Figure 2 the eigenvectors of the Laplacian matrix place the nodes of
connected subgraphs at the same location, even in two, three, or higher dimensions, if the graph
has several subgraphs. This also holds for the eigenvectors of the generalized eigenvalue problem, and
this also holds approximately if the subgraphs are not completely separate from each other. Given this
representation it is much easier than on the original data to cluster the nodes with some
standard clustering algorithm.

Remember that for C intrinsically connected but mutually disconnected subgraphs, i.e. clusters, there are
exactly C eigenvectors with constant values on each of the clusters. For extracting C clusters one would
therefore use the first C eigenvectors, this time including also the first one, see Property 〈9〉.

4.4.2 Algorithm

Normalized spectral clustering algorithm (Ng et al., 2002)

1. Given a set of I data samples, construct a similarity graph G according to one of the methods described
in Section 4.1. For instance, when performing segmentation on a single image, each pixel becomes a node
of the graph with similarity between nodes usually being a function of color and spatial distance.

2. Compute the weight matrix W , degree matrix D (28), and Laplacian matrix L (31) for G.

3. Compute the first C eigenvectors of the generalized eigenvalue problem

♦ Lwα = λαDwα (84)

ordered by increasing eigenvalue.

4. Arrange the eigenvectors w1, ..,wC in the rows� of a matrix U and normalize its columns to
one to get matrix T with

Tij = Uij/

(∑
i′

U2
i′j

)1/2

(85)

A C-dimensional representation yi of data sample i is now given by the i-th column vector
of T .

5. Perform the k-means algorithm on the set of embedded data points {y1, ...yI} to partition the data
into C clusters.
�In the original formulation (Ng et al., 2002), the vectors were arranged in columns. We use rows here for consistency with

the LEM algorithm, see Sec. 4.2.3.

21

4.4.3 Sample application

Figure 9 shows an example of applying spectral clustering to an old data set collected by Edgar
Anderson (Wikipedia, 2017d). He measured length and width of the sepal and petal from 50 exemplars of
three types of iris. One species (red in the left plot) is well separated from the other two, which in turn
are hard to distinguish in the 2D plots. Spectral clustering performs fairly well on this task in 4D as one
can see by comparing ground truth on the left with the clustering result on the right.

(Nicoguaro, 2016, Wikimedia, © CC BY 4.0, URL)5 (Sigbert, 2014, Wikimedia, © CC BY-SA 4.0, URL)6

Figure 9: Spectral clustering on iris (the plant, not the eye) data. Left: length and width of the sepal
and petal from 50 exemplars of three types of iris as indicated by the three colors. Right: Result of spectral
clustering on the 150 four-dimensional data points.

Further reading: (Von Luxburg, 2007), an excellent tutorial on spectral clustering.

Acknowledgments: We thank Jan Melchior and Merlin Schüler for valuable feedback on an earlier version
of these lecture notes.

References

Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering.
In Advances in neural information processing systems, volume 14, pages 585–591. 17

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396. 14, 16, 17, 18, 19

He, X. and Niyogi, P. (2004). Locality preserving projections. In Thrun, S., Saul, L., and Schölkopf, B.,
editors, Advances in neural information processing systems, pages 153–160. MIT Press. 14, 19, 20, 21

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: analysis and an algorithm. Advances
in Neural Information Processing Systems, 14:849–856. 21

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4):395–416. 14, 22

Wikipedia (2016). Indicator vector — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/
index.php?title=Indicator_vector&oldid=743797854, accessed 3 December 2017. 14

22

https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:Iris_dataset_scatterplot.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/wiki/File:Specclus_iriscluster.svg
https://en.wikipedia.org/w/index.php?title=Indicator_vector&oldid=743797854
https://en.wikipedia.org/w/index.php?title=Indicator_vector&oldid=743797854

Wikipedia (2017a). Graph (discrete mathematics) — Wikipedia, The Free Encyclopedia. https://

en.wikipedia.org/w/index.php?title=Graph_(discrete_mathematics)&oldid=800782160, accessed
3 December 2017. 7

Wikipedia (2017b). Laplacian matrix — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/
w/index.php?title=Laplacian_matrix&oldid=812863352, accessed 3 December 2017. 14

Wikipedia (2017c). Rayleigh quotient — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/
w/index.php?title=Rayleigh_quotient&oldid=808561799, accessed 3 December 2017. 10

Wikipedia (2017d). Spektrales Clustering — Wikipedia, Die freie Enzyklopädie. https://de.wikipedia.

org/w/index.php?title=Spectral_Clustering&oldid=170428156, accessed 2 December 2017. 22

Wikipedia (2017e). Stochastic matrix — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/
w/index.php?title=Stochastic_matrix&oldid=813141273, accessed 3 December 2017. 13

Notes

1Belkin & Niyogi, 2002, NIPS, Fig. 1, http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-

techniques-for-embedding-and-clustering.pdf

2Belkin & Niyogi, 2003, Neur. Comp., Fig. 4, https://pdfs.semanticscholar.org/989a/

f45f8242b96cecb91d48b85620e7322e4aa7.pdf

3Belkin & Niyogi, 2003, Neur. Comp., Fig. 5, https://pdfs.semanticscholar.org/989a/

f45f8242b96cecb91d48b85620e7322e4aa7.pdf

4He and Niyogi, 2004, NIPS, Fig. 3, http://papers.nips.cc/paper/2359-locality-preserving-projections.pdf

5Nicoguaro, 2016, Wikimedia,© CC BY 4.0, https://commons.wikimedia.org/wiki/File:Iris_dataset_scatterplot.svg

6Sigbert, 2014, Wikimedia,© CC BY-SA 4.0, https://commons.wikimedia.org/wiki/File:Specclus_iriscluster.svg

23

https://en.wikipedia.org/w/index.php?title=Graph_(discrete_mathematics)&oldid=800782160
https://en.wikipedia.org/w/index.php?title=Graph_(discrete_mathematics)&oldid=800782160
https://en.wikipedia.org/w/index.php?title=Laplacian_matrix&oldid=812863352
https://en.wikipedia.org/w/index.php?title=Laplacian_matrix&oldid=812863352
https://en.wikipedia.org/w/index.php?title=Rayleigh_quotient&oldid=808561799
https://en.wikipedia.org/w/index.php?title=Rayleigh_quotient&oldid=808561799
https://de.wikipedia.org/w/index.php?title=Spectral_Clustering&oldid=170428156
https://de.wikipedia.org/w/index.php?title=Spectral_Clustering&oldid=170428156
https://en.wikipedia.org/w/index.php?title=Stochastic_matrix&oldid=813141273
https://en.wikipedia.org/w/index.php?title=Stochastic_matrix&oldid=813141273
http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
https://pdfs.semanticscholar.org/989a/f45f8242b96cecb91d48b85620e7322e4aa7.pdf
https://pdfs.semanticscholar.org/989a/f45f8242b96cecb91d48b85620e7322e4aa7.pdf
https://pdfs.semanticscholar.org/989a/f45f8242b96cecb91d48b85620e7322e4aa7.pdf
https://pdfs.semanticscholar.org/989a/f45f8242b96cecb91d48b85620e7322e4aa7.pdf
http://papers.nips.cc/paper/2359-locality-preserving-projections.pdf
https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:Iris_dataset_scatterplot.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/wiki/File:Specclus_iriscluster.svg

	1 Introduction
	2 Intuition
	2.1 Heat diffusion analogy of Laplacian eigenmaps
	2.2 Heat diffusion analogy of spectral clustering
	2.3 Heat diffusion equation for connected heat reservoirs
	2.4 Laplacian matrix
	2.5 Solution of the heat diffusion equation

	3 Formalism
	3.1 Simple graphs
	3.2 Matrix representation
	3.3 Optimization problem
	3.4 Associated eigenvalue problem
	3.5 The role of the weighted normalization constraint
	3.6 Symmetric normalized Laplacian matrix
	3.7 Random walk normalized Laplacian matrix +
	3.8 Summary of mathematical properties

	4 Algorithms
	4.1 Similarity graphs
	4.2 Laplacian eigenmaps (LEM)
	4.2.1 Motivation
	4.2.2 Objective
	4.2.3 Algorithm
	4.2.4 Sample applications

	4.3 Locality preserving projections (LPP)
	4.3.1 Linear LPP
	4.3.2 Sample application
	4.3.3 Nonlinear LPP

	4.4 Spectral clustering
	4.4.1 Objective
	4.4.2 Algorithm
	4.4.3 Sample application

