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1 Introduction

2 Intuition

2.1 Heat diffusion analogy of Laplacian eigenmaps

2.2 Heat diffusion analogy of spectral clustering

2.3 Heat diffusion equation for connected heat reservoirs

2.4 Laplacian matrix

2.4.1 Exercise: Laplacian matrix is positive semi-definite

1. Create a small undirected graph with four vertices without loops and edge weights one and calculate
its Laplacian.

Solution: A graph with four vertices and edges e1 = (1, 2), e2 = (2, 3), e3 = (2, 4) with weight one has
the Laplacian

L =


v1 v2 v3 v4

v1 1 −1 0 0
v2 −1 3 −1 −1
v3 0 −1 1 0
v4 0 −1 0 1

 (1)

2. For a directed graph G = (V,E) without loops with vertices V = {v1, ..., vn} and edges E = {e1, ..., em}
(where edges are ordered pairs ei = (vj , vk) indicating a connection to node vj from node vk) the n×m
incidence matrix B = (bij) is defined as:

bij :=


+1 if ej = (vi, vx)

0 if vi /∈ ej
−1 if ej = (vx, vi)

(2)

with vx being an arbitrary vertex. (Sometimes the transpose is defined as the incidence matrix.)

Treat the undirected graph above as a directed graph, where the edges always go from the lower to
the higher index vertex, and calculate its incidence matrix.

Solution:

B =


e1 e2 e3

v1 1 0 0
v2 −1 1 1
v3 0 −1 0
v4 0 0 −1

 (3)

Extra question: Loops are edges that connect a vertex with itself. Why is it important for an
incidence matrix that the graph has no loops?

3. Show that L = BBT . Argue also why this is generally the case, not only in this concrete example.
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Solution: First we consider the concrete example:

L
?
= BBT (4)

(3)
=


1 0 0
−1 1 1

0 −1 0
0 0 −1


 1 −1 0 0

0 1 −1 0
0 1 0 −1

 (5)

=


1 −1 0 0
−1 3 −1 −1

0 −1 1 0
0 −1 0 1

 (6)

(1)
= L (7)

Generally, the Laplacian matrix is the degree matrix D (which is a diagonal matrix with the number
of connections per vertex) minus the adjacency matrix A (which simply indicates with a +1 if two
vertices are connected, assuming the connecting weights are just +1).

The rows of the incidence matrix B contain a +1 or −1 for each edge that the corresponding vertex
has. The inner product of each row vector with itself therefore indicates the degree of the corresponding
vertex, which yields the entries of D on the diagonal.

The inner product between two different row vectors is either −1, if the two corresponding vertices
are connected by an edge or zero if they are not. The reason is that each column vector represents an
edge with exactly one +1 and one −1. No two column vectors have the two ±1s at the same position,
because then they would be the same edge. So two row vectors can have at most one component
occupied in common, indicating the edge between these two vertices. Since one component is −1 the
other +1, the product is −1, yielding the −1s in the off-diagonal entries of the Laplacian.

Extra question: How does the result change if one inverts an edge, making it point from a higher to
a lower index node?

4. Show that L = MMT also holds for a Laplacian matrix with weights not equal to +1, thus for a
graph with general weighting of the edges, with an appropriately chosen matrix M .

Solution: If the weights of the graph are indicated by Wij , then one can simply chose ±
√
Wij in

M where there is a ±1 in B to indicate an edge. Since the inner products between row vectors of
the incidence matrix multiply only the entries comming from the same edge, matrix L ends up having
−
√
Wij

√
Wij = −Wij in the off-diagonal entries and the sum over all Wij for fixed i (or j) in the

diagnoal entries.

5. Prove that L is positive semi-definite.

Solution: This is obvious now since

xTLx = xTM MTx︸ ︷︷ ︸
=:y

= yTy = ‖y‖2 ≥ 0 (8)

2.5 Solution of the heat diffusion equation

2.5.1 Exercise: Eigenvectors and -values of the Laplacian matrix

Consider the Laplacian matrix

L =

 a −a 0
−a a+ b −b

0 −b b

 (1)
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with 0 < a, b.

1. Solve the ordinary eigenvalue problem Lui = γiui for i = 1, 2, 3.

Hint 1: A somewhat tedious calculation yields

0
!
= |L− γI| = (a− γ)(a+ b− γ)(b− γ)− (a− γ)b2 − (b− γ)a2 (2)

⇐= γ2 = (a+ b)−
√
a2 − ab+ b2 (3)

∨ γ3 = (a+ b) +
√
a2 − ab+ b2 (4)

You may take this for granted to also find γ1 and u1, u2, and u3.

Hint 2: One can easily make hypotheses about u2 and u3 by looking at L. Do not try to calculate
them.

Solution: The roots of the characteristic polynomial are

0
!
= |L− γI| (5)

=

∣∣∣∣∣∣
a− γ −a 0
−a a+ b− γ −b
0 −b b− γ

∣∣∣∣∣∣ (6)

= (a− γ)(a+ b− γ)(b− γ)− (a− γ)b2 − (b− γ)a2 (7)

= + aab− aaγ + abb− abγ− aγb+ aγγ− γab+ γaγ − γbb+ γbγ+ γγb− γγγ
− ab2 + γb2 − ba2 + γa2 (8)

= − γ3 + 2γ2a+ 2γ2b− 3γab (9)

= − γ(γ2 − 2γ(a+ b) + 3ab) (10)

⇐= γ1 = 0 (11)

∨ 0 = γ2 − 2γ(a+ b) + 3ab (12)

= γ2 − 2γ(a+ b) + (a+ b)2 − (a+ b)2 + 3ab (13)

= (γ − (a+ b))2 − (a2 − ab+ b2) (14)

⇐⇒ γ − (a+ b) = ±
√
a2 − ab+ b2 (15)

⇐⇒ γ2 = (a+ b)−
√
a2 − ab+ b2 (16)

∨ γ3 = (a+ b) +
√
a2 − ab+ b2 (17)

For γ1 = 0 we can chose u1 = (1, 1, 1)T , since

0
?
= (L− γ1)u1 =

 a −a 0
−a a+ b −b
0 −b b

 1
1
1

 !
=

 0
0
0

 (18)

For γ = γ2,3 = (a + b) ±
√
a2 − ab+ b2 we can see from the first and second component that we can
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chose u2,3 = (a/(a− γ), 1, b/(b− γ))T , since

0
?
= (L− γ)u2,3 (19)

=

 a− γ −a 0
−a a+ b− γ −b
0 −b b− γ

 a
a−γ
1
b

b−γ

 (20)

=

 0

− a2

a−γ + (a+ b− γ)− b2

b−γ
0

 (21)

For the second component we verify

0
?
= − a2

a− γ
+ (a+ b− γ)− b2

b− γ
(22)

⇐⇒ 0 = −a2(b− γ) + (a+ b− γ)(a− γ)(b− γ)− b2(a− γ) (23)
(7)
= 0 (24)

We also verify that the eigenvectors ui are orthogonal to each other.

For u1 versus u2,3 we find

0
?
= uT1 u2,3 (25)

= (1, 1, 1)

 a
a−γ
1
b

b−γ

 (26)

=
a

a− γ
+ 1 +

b

b− γ
(27)

⇐⇒ 0 = a(b− γ) + (a− γ)(b− γ) + b(a− γ) (28)

= ab− aγ + ab− aγ − γb+ γ2 + ba− bγ (29)

= γ2 − 2γ(a+ b) + 3ab (30)
(12)
= 0 (31)
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For u2 versus u3 we find

0
?
= uT2 u3 (32)

=

(
a

a− γ2
, 1,

b

b− γ2

) a
a−γ3

1
b

b−γ3

 (33)

=
a2

(a− γ2)(a− γ3)
+ 1 +

b2

(b− γ2)(b− γ3)
(34)

=
a2

a2 − a(γ2 + γ3) + γ2γ3
+ 1 +

b2

b2 − b(γ2 + γ3) + γ2γ3
(35)

(16,17)
=

a2

a2 − a 2(a+ b) + [(a+ b)2 − (a2 − ab+ b2)]
+ 1

+
b2

b2 − b 2(a+ b) + [(a+ b)2 − (a2 − ab+ b2)]
(36)

=
a2

a2 − [2a2 + 2ab] + [a2 + 2ab+ b2 − a2 + ab− b2]
+ 1

+
b2

b2 − [2b2 + 2ab] + [a2 + 2ab+ b2 − a2 + ab− b2]
(37)

=
a2

ab− a2
+ 1 +

b2

ab− b2
(38)

= − a

a− b
+ 1 +

b

a− b
(39)

= −a− b
a− b

+ 1 (40)

= 0 (41)

Extra question: What can you say about the sign and relative value of the components of u2 and
u3 depending on a and b?

2.5.2 Exercise: Laplacian matrix for disconnected graphs

1. Show that a Laplacian matrix of a graph with N disconnected subgraphs, i.e. subgraphs that have no
edges between them, has at least N eigenvectors with eigenvalue zero.

Solution: Consider first a Laplacian matrix of a connected graph, i.e. N = 1. The Laplacian matrix
is defined as

L := D −W (1)

⇐⇒ Lij = Diiδij −Wij (2)

with

Dii :=
∑
j

Wij =
∑
j

Wji (since W is symmetric) (3)

Wii = 0 (4)
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With this we have

Dii
(3)
=
∑
j

Wij ∀i (5)

⇐⇒ Lii
(2,4)
= −

∑
j 6=i

Lij (6)

⇐⇒
∑
j

Lij = 0 (7)

⇐⇒ L1 = 0 · 1 (8)

with 1 = (1, 1, 1, ..., 1)T . Thus, 1 is always an eigenvector of L with eigenvalue 0.

If the graph has more than one disconnected subgraphs, the indices of the vertices can be reordered
such that L has block structure with N blocks. The consideration above holds for each block in-
dividually. Thus, there is one eigenvector of the form (1, 1, 1, ..., 1, 0, 0, 0, ..., 0)T , N − 2 of the form
(0, 0, 0, ..., 0, 1, 1, 1, ..., 1, 0, 0, 0, ..., 0)T , and one of the form (0, 0, 0, ..., 0, 1, 1, 1, ..., 1)T , all with eigen-
value zero.

These eigenvectors are already orthogonal to each other but must still be normalized to yield an
orthonormal set of eigenvectors.

2. Argue why there are no more than N eigenvectors with eigenvalue zero.

Hint: You may use the relation
1

2

∑
ij

(ui − uj)2Wij = uTLu (9)

Solution: Any vector that has constant values within the diconnected subgraphs can be written as a
linear combination of the eigenvectors given above. Thus, any additional eigenvector ui must introduce
variation within at least one subgraph. Because of (9) this also means that 0 < uTi Lui. This in turn
implies that the corresponding eigenvalue γi is greater zero because if it were zero, Lui = 0 and uTi Lui
could not be greater than zero. Thus, there are no more eigenvectors with eigenvalue zero.

3. Do the results above also hold for the generalized eigenvalue equation

Lw = λDw (10)

Solution: If the eigenvalue is zero then the generalized eigenvalue equation of the pair L and D
becomes the ordinary eigenvalue equation of L. Thus, eigenvectors with eigenvalue zero are common
to both equations. For the same reason there are no eigenvectors with eigenvalue zero for one but not
the other equation. All other eigenvectors therefore have non-zero eigenvalues. Thus, the considerations
above also hold for the generalized eigenvalue equation.
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3 Formalism

3.1 Simple graphs

3.2 Matrix representation

3.3 Optimization problem

3.4 Associated eigenvalue problem

3.4.1 Exercise: Objective function of the Laplacian matrix

Given the Laplacian matrix

L := D −W (1)

⇐⇒ Lij = Diiδij −Wij (2)

with symmetric Wij = Wji and

Dii :=
∑
j

Wij =
∑
j

Wji (3)

Show that
1

2

∑
i,j

(yi − yj)2Wij = yTLy (4)

Solution:

1

2

∑
i,j

(yi − yj)2Wij (5)

=
1

2

∑
i,j

(y2i − 2yiyj + y2j )Wij (6)

=
1

2

∑
i,j

y2iWij −
∑
i,j

yiyjWij +
1

2

∑
i,j

y2jWij (7)

=
1

2

∑
i,j

y2iWij −
∑
i,j

yiyjWij +
1

2

∑
i,j

y2jWji (since Wij is symmetric) (8)

=
1

2

∑
i,j

y2iWij −
∑
i,j

yiyjWij +
1

2

∑
i,j

y2iWij (just swapping the indices) (9)

=
∑
i,j

y2iWij −
∑
i,j

yiyjWij (10)

=
∑
i

y2i
∑
j

Wij −
∑
i,j

yiyjWij (11)

(3)
=

∑
i

y2iDii −
∑
i,j

yiyjWij (12)

=
∑
i,j

yi(Diiδij −Wij)yj (13)

(2)
=

∑
i,j

yiLijyj (14)

= yTLy (15)
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and thus minimizing (1/2)
∑
i,j(yi − yj)2Wij is equivalent to minimizing yTLy.

This also implies that L is positive semi-definite if 0 ≤Wij ∀i, j.

3.4.2 Exercise: Generalized eigenvalue problem

Consider the generalized eigenvalue problem

Aui = λiBui (1)

with some real N × N matrices A and B. The λi are the right-eigenvalues and the ui are the (non-zero)
right-eigenvectors. To find corresponding left-eigenvalues µi and left-eigenvectors vi, one has to solve the
equation

vTi A = µiv
T
i B (2)

1. Show that left- and right-eigenvalues are identical.

Solution: For the right-eigenvalues we find the condition that

Aui
(1)
= λiBui (3)

⇐⇒ (A− λiB)ui = 0 (4)

=⇒ |A− λiB| = 0 (5)

For the left-eigenvalues we find analogously

vTi A
(2)
= µiv

T
i B (6)

⇐⇒ vTi (A− µiB) = 0T (7)

=⇒ |A− µiB| = 0 (8)

Since the conditions for λi and µi are identical, the (sorted) left- and right-eigenvalues are identical
and are simply called eigenvalues λi.

2. Show that vTj Aui = 0 as well as vTj Bui = 0 for λi 6= λj .

Hint: Consider (1) and (2) simultaneously with different eigenvalues.

Solution: We consider the right- and left-eigenvalue equation for i and j, respectively,

Aui
(1)
= λiBui |vTj · (9)

∧ vTj A
(2)
= λjv

T
j B | · ui (10)

=⇒ vTj Aui = λiv
T
j Bui (11)

∧ vTj Aui = λjv
T
j Bui (12)

⇐⇒ vTj Aui = 0 (13)

∧ vTj Bui = 0 (since λi 6= λj) (14)

Notice that this is even true if either λi = 0 or λj = 0, but not both, of course.
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3. Show that for symmetric A and B the right-eigenvectors are also left-eigenvectors.

Solution: This is easy to see if we transpose the right-eigenvalue equation.

Aui
(1)
= λiBui |·T (15)

⇐⇒ uTi A
T = λiu

T
i B

T (16)

⇐⇒ uTi A = λiu
T
i B (since A = AT and B = BT ) (17)

⇐⇒ (2) (18)

Thus, right-eigenvectors are also left-eigenvectors and we can simply speak of eigenvectors.

4. Show that for symmetric A and B we have uTj Aui = 0 as well as uTj Bui = 0 for λi 6= λj .

Solution: This follows trivially from the last two points of this exercise. This is not generally true for
non-symmetric matrices.

5. For symmetric A and B it is convenient to normalize the eigenvectors such that uTi Bui = 1. Assume
the eigenvectors form a basis, i.e. they are complete, and you want to represent an arbitrary vector y
wrt this basis, i.e.

y =
∑
i

αiui (19)

Which constraint on the αi follows from the constraint yTBy = 1?

Solution:

1
!
= yTBy (20)

=
∑
i,j

αiαj u
T
i Buj︸ ︷︷ ︸
= δij

(21)

=
∑
i

α2
i (22)

6. Assume A and B are symmetric and you want to minimize (or maiximze) yTAy under the constraint
yTBy = 1. What is the solution?

Hint: Use ansatz (19) and assume uTi Bui = 1.

Solution: We want to minimize (or maximize)

yTAy
(19)
=
∑
i,j

αiαju
T
i Auj (23)

(1)
=
∑
i,j

αiαjλj u
T
i Buj︸ ︷︷ ︸
= δij

(24)

=
∑
i

α2
iλi (25)

Since this is minimized (or maximized) subject to
∑
i α

2
i = 1 it is quite obvious that αi = δ1i is an

optimal solution if the eigenvalues are ordered like λ1 ≤ λ2 ≤ ... ≤ λ1 (or λ1 ≥ λ2 ≥ ... ≥ λ1). Thus
u1 is the optimal solution.

Extra question: If for some reason u1 is not wanted as a solution and the solution should be

orthogonal to it wrt a metric induced by B, i.e. yBu1
!
= 0, what would then be the optimal solution?
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3.4.3 Exercise: Eigenvectors of a graph with six nodes

Consider a graph with six nodes arranged in a 2×3 lattice with edges of weight 1 between direct neighbors,
like the one shown in the figure.

Make an educated guess how the six eigenvectors of the corresponding Laplacian matrix might look.

Figure: Graph with six nodes. Color the nodes red/blue or mark them with +/- according to the sign you
give them. Nodes with value near zero stay empty.

Solution: Since

uTLu =
1

2

∑
ij

(ui − uj)2Wij (1)

the first eigenvector u1 minimizes
∑
ij(u1,i − u1,j)2Wij under a fixed norm constraint. It is obvious that

a vector with identical components does that. Higher eigenvectors ui, 1 < i minimize the same function,
but must also be orthogonal to the first and any other earlier eigenvector. Thus one looks for values on the
nodes that are similar for neighboring nodes and, at the same time, vary enough to obey the orthogonality
constraint. One possible proposal for eigenvectors is given in the figure below.

e

1
e

e e

e
2

3

4

5 6

e

+ + +

+ ++

+

+

+ +

+ +

+ + + +

+

+ +

+

− −

− −

− − − −

−

−

−

−

Figure: Hypothesis about six possible eigenvectors. Fainter colors indicate smaller values compared to full
colors.
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The next figure shows concrete values calculated numerically for this graph.

λ = 0 λ = λ = 

λ = λ = λ = 

1

2

3

3 5e

1
e

e e

e
2

3

4

5 6

e

0.41 0.41

0.41 0.41 0.41

0.410.410.41

0.5 0 −0.5

0.5 0 −0.5

0.41

−0.41 −0.41 −0.41 −0.29 0.58 −0.29

0.29−0.580.29

0.58

−0.29 −0.29

−0.29 −0.29

0.58

−0.01 0.51 −0.49

−0.49 0.51 0.01

− −

− −+ + +

+ ++

+

+

+

+

+ + + + +

+

−

−

− − − −

−

−

−

−

+

+

Figure: Six eigenvectors numerically calculated by Sebastian Gallon (WS’18).

Extra question: How do you explain the discrepancy between the hypothesized and the numerically
determined eigenvectors.

3.4.4 Exercise: Example of Laplacian eigenmaps with three nodes

Given a connected graph with vertices vi and undirected edges ek = (vi, vj) with symmetric positive weights
Wij , the goal of the Laplacian eigenmaps algorithm is to asign a value wi to each vertex vi to

minimize
1

2

∑
i,j

(wi − wj)2Wij (1)

under the constraints

wTD1 = 0 (weighted zero mean) (2)

and wTDw = 1 (weighted unit variance) (3)

where D is a diagonal matrix with

Dii :=
∑
j

Wij =
∑
j

Wji (since W is symmetric) (4)

One can show that this is solved by the second eigenvector of the generalized eigenvalue equation

Lw = λDw (5)

with the Laplacian matrix

L := D −W (6)

⇐⇒ Lij = Diiδij −Wij (7)

Verify this statement for the graph with the following Laplacian matrix:

L =

 a −a 0
−a a+ b −b

0 −b b

 (8)

with 0 < a, b. Proceed as follows.
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1. Sketch the graph of the Laplacian matrix.

Solution: The graph has three nodes, the first two are connected with a weight a, the last two with
a weight b. Sketch not available.

2. Solve the generalized eigenvalue problem Lw̃i = λiDw̃i for i = 1, 2, 3. The eigenvectors do not need
to be normalized yet, that is done in the next step.

Solution: A solution exists for values of λ for which |L− λD| = 0. With ζ := 1− λ we have

0
!
= |L− λD| (9)

=

∣∣∣∣∣∣
a− λa −a 0
−a (a+ b)− λ(a+ b) −b

0 −b b− λb

∣∣∣∣∣∣ (10)

=

∣∣∣∣∣∣
ζa −a 0
−a ζ(a+ b) −b

0 −b ζb

∣∣∣∣∣∣ (11)

= ζ3a(a+ b)b− ζa2b− ζab2 (12)

= (ζ3 − ζ)(a2b+ ab2) (13)

⇐⇒ 0 = (ζ3 − ζ) (since 0 < a, b) (14)

⇐= ζ1 = 1 (15)

∨ ζ2 = 0 (16)

∨ ζ3 = −1 (17)

⇐⇒ λ1 = 0 (18)

∨ λ2 = 1 (19)

∨ λ3 = 2 (20)

For λ1 = 0 we can chose w̃1 = (1, 1, 1)T , since

0
?
= (L− λ1D)w̃1 =

 a −a 0
−a (a+ b) −b

0 −b b

 1
1
1

 !
=

 0
0
0

 (21)

For λ2 = 1 we can chose w̃2 = (−b, 0, a)T , since

0
?
= (L− λ2D)w̃2 =

 0 −a 0
−a 0 −b

0 −b 0

 −b0
a

 !
=

 0
0
0

 (22)

For λ3 = 2 we can chose w̃3 = (1,−1, 1)T , since

0
?
= (L− λ3D)w̃3 =

 −a −a 0
−a −(a+ b) −b

0 −b −b

 1
−1

1

 !
=

 0
0
0

 (23)

3. Check the eigenvectors whether they are consistent with constraint (2).
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Solution: For the first eigenvector we find

0
?
= w̃T

1 D1 (24)

= (1, 1, 1)

 a 0 0
0 (a+ b) 0
0 0 b

 1
1
1

 (25)

= (1, 1, 1)

 a
(a+ b)
b

 (26)

= 2(a+ b) (27)
!

6= 0 (28)

which is not true. This is not surprising, since for 0 < a, b the expression w̃T
i D1 can be interpreted

as an inner product of w̃i with 1 with a metric induced by D. Since w̃1 = 1 the expression w̃T
1 D1

becomes the norm of 1 squared, which should not be zero for non-zero vectors.

For the second eigenvector we find

0
?
= w̃T

2 D1 (29)

= (−b, 0, a)

 a
(a+ b)
b

 (30)

= −ab+ ab (31)
!
= 0 (32)

For the third eigenvector we find

0
?
= w̃T

3 D1 (33)

= (1,−1, 1)

 a
(a+ b)
b

 (34)

= a− (a+ b) + b (35)
!
= 0 (36)

This is again not surprising, since generalized eigenvectors for symmetric matrices obey the relation
w̃T
i Dw̃j = 0 for i 6= j and the first eigenvector is w̃1 = 1.

4. Scale the eigenvectors such that they become consistent with constraint (3).

Hint: Use the notation wi := σiw̃i with appropriate scaling factors σi (with 0 < σi to make it unique).
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Solution: We calculate the scaling factors by inserting the wi in equation (3).

1
!
= wT

1 Dw1 (37)

= σ2
1w̃

T
1 Dw̃1 (38)

= σ2
1(1, 1, 1)

 a 0 0
0 (a+ b) 0
0 0 b

 1
1
1

 (39)

= σ2
1(1, 1, 1)

 a
(a+ b)
b

 (40)

= σ2
1 2 (a+ b) (41)

⇐⇒ σ1 = 1/
√

2 (a+ b) (since 0 < σi) (42)

1
!
= wT

2 Dw2 (43)

= σ2
2w̃

T
2 Dw̃2 (44)

= σ2
2(−b, 0, a)

 a 0 0
0 (a+ b) 0
0 0 b

 −b0
a

 (45)

= σ2
2(−b, 0, a)

 −ab0
ab

 (46)

= σ2
2(ab2 + a2b) (47)

⇐⇒ σ2 = 1/
√
ab2 + a2b (since 0 < σi) (48)

1
!
= wT

3 Dw3 (49)

= σ2
3w̃

T
3 Dw̃3 (50)

= σ2
3(1,−1, 1)

 a 0 0
0 (a+ b) 0
0 0 b

 1
−1

1

 (51)

= σ2
3(1,−1, 1)

 a
−(a+ b)

b

 (52)

= σ2
3 2 (a+ b) (53)

⇐⇒ σ3 = 1/
√

2 (a+ b) (since 0 < σi) (54)

Note that since D is diagonal with strictly positive diagonal elements, it is positive definite and wT
i Dwi

can be interpreted as a norm with a metric induced by D. Not surprisingly, σ3 = σ1 because w̃1 and
w̃3 differ only in a sign, which does not matter for the norm.

5. Any vector in y ∈ R3 can be written as a linear combination of the three normalized eigenvectors, i.e.

y =

3∑
i=1

αiwi (55)
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Derive constraints on the αi that follow if we impose constraints (2,3) on y.

Solution: Constraint (2) yields

0
!
= yTD1 (56)

(55)
=

3∑
i=1

αi wT
i D1︸ ︷︷ ︸

(29,33,37)
= δi1

(57)

= α1 (58)

Constraint (3) yields

1
!
= yTDy (59)

(55)
=

3∑
i,j=1

αiαj w
T
i Dwj︸ ︷︷ ︸
= δij

(60)

=

3∑
i=1

α2
i (61)

6. Find weights αi that are consistent with constraints (2,3) and that minimize the objective function.

Solution: From the previous step we know that α1 = 0 and α2
2 + α2

3 = 1. We also know the value of
the objective function is yTLy. Combining this with the ansatz (55) yields

minimize yTLy
(55)
=

3∑
i,j=2

αiαjw
T
i Lwj (62)

=

3∑
i,j=2

αiαjλj w
T
i Dwj︸ ︷︷ ︸
= δij

(since wj are eigenvectors) (63)

=

3∑
i=2

α2
iλi (64)

This is obviously solved by setting α2 = 1, α3 = 0 and with that we get yTLy = λ2.

Extra question: What is the value of the objective function for eigenvectors in general?

7. Plot the result of the Laplacian eigenmaps algorithm for this simple example, i.e. visualize the compo-
nents of w2 and w3 in a 2D plot. Discuss, how the plot changes with a and b.

Solution: The two eigenvectors can be written as

w2 =
1√

ab2 + a2b

 −b0
a

 (65)

=

√
2√
ab

1√
2 (a+ b)

 −b0
a

 (66)

=
1√

2 (a+ b)

 −
√

2 b
a

0√
2 a
b

 (67)

(68)
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w3 =
1√

2 (a+ b)

 1
−1

1

 (69)

so that they have a common prefactor. Keeping the prefactor constant one, the vectors can be visualized
like in the figure. Changing the prefactor only scales all points.

1

1

u

u
3i

2i

Figure: Laplacian eigenmaps example with three nodes and values for a and b such that (a+ b) = 1/2 and
b/a = 1 (red), b/a = 2 (blue), and b/a = 16 (yellow).

I find it interesting that the components of w3 do not depend at all on the ratio of a and b and that
the components of w3 change so little. The direction of change is reasonable; nodes less connected
move farther apart.

It is a question whether it is particularly useful in this example to plot the nodes in the 2D space of
the first two non-zero eigenvectors. A plot in 1D might be more appropriate.

Extra question: How do the results change if the graph is diconnected, i.e. 0 = a < b or even 0 = a = b?

3.4.5 Exercise: Constraints of the Laplacian eigenmaps

In the Laplacian eigenmap algorithm, each vertex vi of a graph with symmetric edge weights Wij gets asigned
a value wi with the goal to

minimize
1

2

∑
ij

(wi − wj)2Wij (1)

under the constraints

wTD1 = 0 (weighted zero mean) (2)

and wTDw = 1 (weighted unit variance) (3)

One can show that
1

2

∑
ij

(wi − wj)2Wij = wTLw (4)

where

Lij := Diiδij −Wij (5)

with Dii :=
∑
j

Wij (6)
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Show whether it is possibly to find an invertible linear coordinate transformation

w̃ = Tw (7)

such that the optimization problem simplifies to

minimize w̃T L̂w̃ (8)

under the constraints

w̃T1 = 0 (zero mean) (9)

and w̃T w̃ = 1 (unit variance) (10)

Solution: No, that is not possible. With (7) we would get the following relation between the two optimiza-
tion problems:

minimize w̃T L̂w̃ = wT T T L̂T︸ ︷︷ ︸
?
=L

w (11)

under the constraints

w̃T1 = wT T T︸︷︷︸
?
=D

1 = 0 (zero mean) (12)

and w̃T w̃ = wT T TT︸ ︷︷ ︸
?
=D

w = 1 (unit variance) (13)

T T L̂T
?
= L would be ok, but T T ?

= D and T TT
?
= D cannot be simultaneously fulfilled.

If one would set T := D1/2 = diag(
√
Dii) then the two optimization problems would be almost identical,

just in two different coordinate systems. To make them really identical, one would only have to change the
original constraint (2) to

wTD1/21 = 0 (weighted zero mean) (14)

See the symmetric normalized Laplacian matrix in the lecture notes.

Extra question: How would the solutions of the original optimization problem change if one did that.

3.5 The role of the weighted normalization constraint

3.6 Symmetric normalized Laplacian matrix

3.6.1 Exercise: Eigenvectors and -values of the symmetric normalized Laplacian matrix

Consider the Laplacian matrix

L =

 a −a 0
−a a+ b −b

0 −b b

 (1)

with 0 < a, b.
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1. Calculate the symmetric normalized Laplacian matrix.

Solution: The symmetric normalized Laplacian is

L̂ := DTLD (2)

=

 1/
√
a 0 0

0 1/
√
a+ b 0

0 0 1/
√
b

 a −a 0
−a a+ b −b
0 −b b

 1/
√
a 0 0

0 1/
√
a+ b 0

0 0 1/
√
b

 (3)

=


1 −a√

a(a+b)
0

−a√
a(a+b)

1 −b√
b(a+b)

0 −b√
b(a+b)

1

 (4)

=


1 −

√
a
a+b 0

−
√

a
a+b 1 −

√
b
a+b

0 −
√

b
a+b 1

 (5)

2. Solve the ordinary eigenvalue problem L̂ŵi = λiŵi for i = 1, 2, 3.

Solution: The roots of the characteristic polynomial are

0
!
= |L̂− λI| (6)

=

∣∣∣∣∣∣∣∣∣
1− λ −

√
a
a+b 0

−
√

a
a+b 1− λ −

√
b
a+b

0 −
√

b
a+b 1− λ

∣∣∣∣∣∣∣∣∣ (7)

= (1− λ)3 − (1− λ)
b

a+ b
− (1− λ)

a

a+ b
(8)

= (1− λ) ·
[
(1− λ)2 − b

(a+ b)
− a

(a+ b)

]
(9)

= (1− λ) ·
[
(1− λ)2 − 1

]
(10)

⇐= λ1 = 0 (11)

∨ λ2 = 1 (12)

∨ λ3 = 2 (13)

For λ1 = 0 we can chose ŵ1 = (
√
a,
√
a+ b,

√
b)T , since

0
?
= (L̂− λ1)ŵ1 =


1 −

√
a
a+b 0

−
√

a
a+b 1 −

√
b
a+b

0 −
√

b
a+b 1


 √

a√
a+ b√
b

 !
=

 0
0
0

 (14)

For λ2 = 1 we can chose ŵ2 = (−b
√
a, 0, a

√
b)T , since

0
?
= (L− λ2)ŵ2 =


0 −

√
a
a+b 0

−
√

a
a+b 0 −

√
b
a+b

0 −
√

b
a+b 0


 −b√a0

a
√
b

 !
=

 0
0
0

 (15)
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For λ3 = 2 we can chose ŵ1 = (
√
a,−
√
a+ b,

√
b)T , since

0
?
= (L− λ3D)ŵ3 =


−1 −

√
a
a+b 0

−
√

a
a+b −1 −

√
b
a+b

0 −
√

b
a+b −1


 √

a

−
√
a+ b√
b

 !
=

 0
0
0

 (16)

Extra question: How, do you think, did I get the eigenvectors of this eigenvalue equation?

3.7 Random walk normalized Laplacian matrix +

3.8 Summary of mathematical properties

4 Algorithms

4.1 Similarity graphs

4.2 Laplacian eigenmaps (LEM)

4.2.1 Motivation

4.2.2 Objective

4.2.3 Algorithm

4.2.4 Sample applications

4.3 Locality preserving projections (LPP)

4.3.1 Linear LPP

4.3.2 Sample application

4.3.3 Nonlinear LPP

4.4 Spectral clustering

4.4.1 Objective

4.4.2 Algorithm

4.4.3 Sample application
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